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|. Introduction.

In the last few years, a number of algorithms using spectral collocation methods have been
successfully implemented to solve the incompressible Navier-Stokes equations in a domain Q of
R or R®
(1.1 -vAu+gradp + (uViu=f inQ

divu=0 inQ ,

’

provided with appropriate boundary conditions : periodic, Dirichlet or mixed ones. We refer to
[VGH] and to [CHQZ] for a detailed bibliography. In most of them, the collocation points in the
nonperiodic directions are the nodes of a Gauss-Lobatto quadrature formula associated with the
Chebysheyv polynomials. Indeed the use of the Fast Fourier Transform allows a 1ess expensive
computation of the derivatives and the nonlinear terms. However, as far as we know, the only
theoretical justifications of some of these algorithms are achieved with the Chebyshev nodes
replaced by the Legendre ones (see e.q., [BMM1][BMM2]). The aim of this paper is the numerical
analysis of a collocation method involving the Chebyshev nodes, for Dirichlet boundary conditions

and when the domain Q is the square }-1,1 [2 ; corresponding numerical experiments can be found
in [Mo][Mé].

The analysis we present here has already been achieved for the Legendre collocation nodes.
in [BMM2]. The extension to the Chebyshev methods presents essentially two difficulties :
1) In the variational farmulation of both the continuous and the discrete problems, the classical
Sobolev spaces have to be replaced by weighted Sobolev spaces, the weight of which is the
Chebyshev one. Several trace theorems in these spaces, as well as some regularity results for the
Dirichlet probiem for the laplacian in a square, are needed by our study ; these are recent (see
(8MD.
2) Due to the Chebyshev weight, the analysis of the Stokes problem - which one abtains by
neglecting the nonlinear terms in (1.1) - and of its approximation involves a variational
formulation of the form
(1.2) a(u,v) + by(v,p) =<tv>

by(u,g) =0

In this system, the bilinear forms b, and b, are distinct, in opposition to the classical

saddle-point problem first studied in [Br]. We shall consider such a problem in an abstract
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framework and prove that it is well-posed if and only if several inf-sup conditions are satisfied :
two for the form a and one for each of the forms b, and b, . We shall also analyze its discretization
and state general error estimates which can be applied to a number of numerical methods. Our
hope is that this abstract variational formulation will be used for other equations involving
weighted spaces.

In the particular case of the discretization of the Stokes problem by spectral methods, in
order toobtain a well-posed problem, we have to exhibit the spurious modes of the pressure, ie.
the modes which cancel the discrete gradient. Thus, we derive an appropriate choice for the space
of discrete pressures and we can prove that the inf-sup conditions are satisfied. The results we
obtain are very similar to the corresponding ones for the Legendre methods (see [BMM2]). The

convergence estimates can be extended to the Navier—-Stokes equations without difficulty.

An outline of the paper is as follows. Section |1 is devoted to an abstract variational problem
with inf-sup conditions. In Section 111, we state a variational farmulation of the Stokes problem in
weighted Sobolev spaces, the weight of which is the Chebyshev one. In Section IV, we study a
Galerkin spectral method to discretize this problem. The spectral collocation method for the Stokes

problem is thoroughly analyzed in Section V. The results are extended in Section Y1 to the full

Navier-Stokes equations thanks to a fixed point theorem.

Notations : The norm of any Banach space E is denoted by ||.[|; , while <.,.> is the duality pairing
between E and its dual space E*. For any pair (E,F) of Banach spaces, L(E,F) represents the space of
continuous linear mappings from E into F. We mean by A ® B the tensorial product of any sets A
and B in a Banach space, while A®? is the tensarial product of A by itself.

For any domain A in R® and for any real number s, we use the classical hilbertian Sobolev

spaces H(A), the norm of which is denoted by (N

In all that follows, ¢, ¢' ... are generic constants, independent of the discretization.




II. An abstract variational system, and its approximation.

[1.1. The_continuous case.

Let X, and M, (i = 1, 2) be real reflexive Banach spaces. We assume we are given three
continuous bilinear forms, a: X, x X, = Randb;: X, x M, >R (i =1, 2). For any given f in X3
and g in M, , we consider the following problem :Find (u,p)in X, x M, such that
(1.1 VveX,, aluy) +b(v,p)=<fv> |

VgeM,, b,(u,a)=<g,0>

In order to study this problem, let us introduce the linear operators A € L( X, ,X'1) and
B, €L(X,,M;) (i = 1, 2) associated with the forms a and b; by the relations
(11.2) YueX,,vveX,, <Auv>=aluyv)
(11.3) VueX,,VageM,, <Bug>=b(ug ;
we denote by B].T eL(M,,X;) (i =1, 2) the adjoint operator of B, .

Foranygin M. (i = 1, 2), we define the closed affine space
(N4) K@ ={veX ;¥YageM ,b(v,a =<g0>}

j ’

and we note that the subspace K; = K,(0) is the kernel of the operator B.. Moreover we introduce
the linear mapping TT : X} - K defined for each f € X by
(1.5) VveK,, <Tfy>=«<fyv>
Finally, we denote by K: the polar set of K, i.e., thekernel of the mapping TT.
Let us define the operator A : X, xM, - X;x M, by the reiation
(1.6)  A(u,p) = (Au +Bip,B,u) ;
then (11.1) is equivalent to
(1.7)  Alu,p) =(f,9)

We can prove the following theorem :
[heorem |I.1 :The operator Ais an isomorphism from X,x Mjonto X x M, if and only if
the following conditions (Cgy)and (C)) (i = 1, 2)are satisfied
(Cy)  TIA: K, - K isan isomorphism

(C) thereexistsaconstant B, > 0 ,such that forany q€ M, , [Blall: > B.llall,,
1 1

Proof : We assume first that conditions (C,) and (C) (i = 1, 2) are satisfied, and we prove that A

is an isomorphism. Given f in Xjand g in M, , let us observe that by (C,) and [Br, Thm 0.1] there
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exists U in X, such that B,u =gand IIUHX2 < @51 ||g|IM.2. Moreover by (C,) there exists a unique u,
in K, such that TTAuy = TIf - TTAU , and one has

Jug i, < & Clifll: + gl
Let usset u=u + u, . The element f — Au belongs to K, , hence by (C,) and the Closed Range
Theorem, there exists a unique p in M, such that BTp = f - Au . Thus we have proved that A is
onto. It is straightforward to check that A is one to one, and since it is continuous because so are
A, BT and B, , we conclude that A is an isomorphism by using the Open Mapping Thearem.

Conversely, let us suppose that A is an isomorphism. For each g in M, , we have
A(0,q) = (B1Tq,0); hence, from the continuity of A", we obtain

lally, <BATTHIB Gl
which is (C,) . On the other hand, for each g in M, , let us set (w,q) = /\'1(0,g). Then the
mapping : g->w is continuous from M, into X, and is such that B,w = g. Thus we have (C,), using
[Br, Thm 0.1]. Now we prove that TTA is an isomorphism. Given f in K}, let us set
(w,q) = A~1(£,0). Then w belongs to K, and satisfies

TMAw = TIf - TIBjq=T(f=f ,
since TIBI isequal to 0. Thus TTA is onto. Finally, let w in K, be such that TTAw = 0, by (C,) and
the Closed Range Theorem, there exists g in M, such that BTq = - Aw. Thus A(w,q) is equal to

(0,0), hence, w isequal to O, i.e., TTA is one to one. This concludes the proof of the thearem.

Remark Il1.1: By well-known results of functional analysis, we can express condition (CO) in a

variational form. Precisely, (C,) is equivalent to the following condition (see, e.q. [Ba]) : there

exists a constant oy > 0 such that

(1.8)  VYueK, , sup a(u,v)

2> oy [luf
ek, T, 7

1
and

(1.9) VvveK,\N{0} , sup aluyv) > 0.
uek,

By the Open Mapping Theorem this is also equivalent to the existence of a constant «, > 0 such
that

a(u,v)

(”]0) VV€K1 , Sup W— ?0(2||V”X1
2

uek
2
and

(1) YuekK,\N{0} , sup a(uyv) >0 .
v ek,
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If K, (or K,) are finite dimensional spaces, then the relation (11.9) or (11.11) can be replaced by
the requirement that
(11.112) dimK, =dim K, .

Similarly, we can write the condition (C) (i = 1, 2) equivalently as follows : there exists a
constant B, > O such that
bi(v, a)

(1.13), ¥ qgeM., sup —— >8>0
L 2
These are the forms under which the conditions (C,) and (C) (i =1, 2) are usually checked in the

applications.

Following the proof of Theorem |I.1 one can easily estimate the norm of the inverse
isomorphism A~"in term of the constants associated with the forms a and b, .
Denoting by ¥y the norm of a:
a(u
(11.14) ¥ = sup —HU—ML—HW—
ueX,,veX, Xy X
we have the following result.

Corollary lI.1 : Assume that hypotheses (I1.8), (11.9)and (11.13), (i = 1, 2) hold. Then, the
solution (u,p)of problem (11.1) satisfies the following estimates

(1.15) Jlully, < o Il + 85" Qe o ) gl
2 1 2

(11.16) lplly, < 87" (e o7 ) [Tl + 8785 "% (1o o) lally,

{1.2. The fini imensional roximation,

We want to approximate problem (l1.1) by a finite dimensional system. To this end, we
introduce a discretization parameter 8 > 0, and we assume we are given closed subspaces X., and
M (i = 1, 2) contained in X, and M. respectively. The continuous bilinear forms & and b, are

approximated by three continuous bilinear forms g, : X, x X, >R and by : X, x Mo — R
(i=1,2).

For any fg in X; and g in M, , we consider the following approximation of problem
(1L.1) :Find (ug , pg) in X5 x Mg stch that
(11.17) V Vs € Xy n 85Uy, V) + b (Ve pg) = <fg V>
V05 € Mps s Dps(Uy  dg) = <G5, G

We assume that the forms a; and b, satisfy the necessary and sufficient conditions for problem
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(11.17) to be well-posed, as stated in Theorem I1.1. More precisely, foranygin M; (i =1, 2), we
introduce the affine subspace

(11.18) K (@) ={vye Xy sV ag€ My, by (vg,05) = <9,8,> }

and we set K, = K;,(0). We make the following assumptions :

a) there exists a constant o, > O such that

a. (U., V)

(1.19) Yu eK,. sup —8 88T > o, |l
5 € Nos v €K, ”\,8“)(1 15 s”x2
(11.20) VvyeK, \{0} ,  sup g (ug,vg) >0
Ug € Ko

this second condition, if K, and K, are finite dimensional, can be equivalently replaced by
(11.21)  dim K, =dim K,
b) thereexists a constant B, > 0 (i =1, 2) such that

bip(vs, Q)

(11.22), Vg, €M, sup >B.>0
! b ls Vs € Xis "V5 ")(i ”qs”Mi i
Moreover, we denate by
(11.23) ¥, = sup ACZY
Ug € o5 , Vs € Xpg llug lly, lvglly,
the norm of the form a, .
Corollary 1.2 : Assume that hypotheses (11.19), (11.20) and (11.22), (i = 1, 2) hold. Then

problem (11.17) has a unigue solution (ug ,pg ). Moreover the solution (ug ,pg ) satisfies the

following estimates

)

-1 -1 - - -
(11.25) "D5”M1 < 515 (]+0(15X5) ||f5”x'1 + @1; 5251 X5(1+0(151X5) ||95”M'2

-1 -1 -
(11.24) “Usnx < 0(18||f8”)(' + 625 (]+0(151X5) ||95||M'
2 1 2

.3, Error estimates,
We assume now that there exist a solution (u,p) to problem (I1.1) and a solution (ug, pg) to

problem (11.17). We want to derive a general error estimate between them.

First, we estimate how an element of K.(g) can be approximated by an element of K;s(g,), for
any g and g given in M .

Proposition 1.1 : Assume that hypothesis (11.22), holds. For any element v in K\(g), the
followingestimate is satisfied :




inf llv—willx.
Wy € Kig(gy) '
_ . B (Vs
(11.26) <o (1+; ;) [ inf | “V‘Vs"x‘ + sup (bl l5)(v8 Qg) )
Vg € Xis ' g€ M ”qSHMi
+ sup <g_gs ) '315> ]
e, Mol

Proof : Let v be any element in X, . By (11.22), and [Br, Thm 0.1], there exists z; in X,; such
that

(1.27) VaeMy, bylzg, ) =bylvg .G - <G, 0>

) b, (2, , Gg)
11.28 S8 1 ol
( ) HZS “Xi < 51 3 qSLépM "CISHM].

Clearly, the element w, = v, - 2, belongs to K;s(g;) and satisfies
(1.29)  Iv-w,lly <Iv-vgli, +1zsl,
Thanks to (11.27), we write
Vg€ My, Dylzg,8) = = bilv-vy, 85 ~ (b-by){vs Q) + <805, Q>
hence, using (11.28) and the cantinuity of b, yields
b.-b, -
(mbplve . &), qpp S0% %
T, qem, Tl
The last inequality, together with (11.29), gives the proposition.

lzgll, <B7q {cllv-velly + sup
1 1 qs e

Next, we derive the main error estimate for u-u; .
Theorem 11.2 : Assume that hypothesis (11.19) holds. Then the solutions (u,p) of (N.1)and
(ug, pg) OF (11.17), satisfy the following estimate

lu=u.lly <c(l+sos) [ (1+y,) inf lu-w]
5 X2 18 8 WsG Kgs(gs) 5 X2

(11.30) + inf { (1 +Xs) ||U_V8”X2 + sup (a—aﬁ)z(\llls »25) }
Vg € Xop % € X P
| (b,-b )z , Q)
+ inf {||D—qs“M1 + sup 1 1IIE’Z “8 . )
O € Mys %€ s P
f-f., 2>
+ SuUp — 2 ]

2 € X5 stux1




Proof : Let w, be any element in K, (g). By (11.19), we have

_1 a(U -W )Z)
(11.31)  Jug=welly, <oy sup 8Hsll =
2 s € Kis %X,

But, thanks ta (11.1), (11.17) and (I1.18), for any z, in K, , we can write

ag(Us—W; , 25) = —ag(wy , 20) + <fy, 2>

= a(u, zg) - ag(wy , Z) +by(z;, p) - <1y, Zz>

Now, let v, be any element in X, and g; be any element in M, . By (11.18), we obtain

a5(Ug—W, , ) = 8(u,2) —ag(wy , 29) +b,(2, p-gy) + (by-b,(z, Q) - <f-f, 2>
hence,
(11.32) | ag(ug-wy , Z) = alu-vy , 2g) +ag(ve—wg , 20) + (a-a) (Vg , 2¢) + b,(25, p-0y)

+ (By=by)(2g . G5) — <f-fy L 2>

Using (11.23) and the continuity of aand b, in the last formula, we deduce

1 (a-ag) (v, , 2,)
llug-ws llx,, < oig [ llu-wlly, + {(yeg) lu-villy, + sup 5”2 ”8 )
Zs € Xy six,
b,-b.)(z , f-f. .2
Lolpoggly, « sup PG g g, Tz g
Tz e X, stnx1 25 € X o5 ”Zs”x1
which gives the theorem.
Remark 1.2 : Sometimes it can be useful ta make a further assumption on the form b which

16
will always be satisfied in the applications we have in mind. It will allow us to predict an optimal

rate of decay for the error u-u, even in the case where M. is a bad approximation of M, . Thus we
assume that there exists a subspace M, of M, such that the form b, is in fact defined on
X, x M., and satisfies

(1.33) VvgeK, ,VaeMy, b (vy,q)=0

(In applications, F’H8 will be a subspace of M, containing M, and such that the elements of M, can

be approximated in an optimal way by elements of F’lm) Then, we can replace  inf by

. . ‘ ‘ 05 € Mys
inf in the right-hand side of (11.30).

qseﬁm

Now, we indicate a remarkable case in which estimate (11.30) can be simplified. The result
follows easily from (11.32).

Corollary Il.3 : Assume that hypothesis (I1.19)holds and that




(1.34) K,y <K,

Then the solutions (u,p)of (11.1)and (ug, pg)of (11.17), satisfy the following estimate

lu-ugll, < ¢ T+ [(14yg) inf lu-wely,
Ws € Kos(gs
(11.35) +oinf o { ey lu-velly + sup (a-a,)(vg , 2,) )
Vs € Xog 2z € Xy, "ZSHX1
Kf-f., 2>
i A P M
25 € Xy Zollx,

Finally, an error estimate for p—p, is provided by the following result.
Theorem 11.3 : Assume that hypotheses (11.19)and (11.22) hold. Then the solutions (u,p)of
(I1.1)and (ug, pg)of (11.17), satisfy the following estimate

Ip=pelly, < ¢ (14870 w1y [(eyg)  inf llu-w; Il
W, € Kyg(gs 2

(8-8) (v , 2¢)

P P—

T A e
5 € My Tz e Xy, ||Zs||x1

+ inf {(1+xs)|\u—v8|1x2+ sup

vseX28 zsex

(11.36) '

}

+
25 € Xy “Zs"x1

Proof : Let gy be any element in M, . By (11.22), , we have

) byg(2g . Ps—05)
(1137) Upg-glly, <835’ S8 mfi,llis 8
1

But, thanks to problems (m; andTH. 17), for any zy in X, and v, in X, we can write
b15(Zs , Ps=0g) = ~ 855, Z5) + <fy , 2> = By(Z5 , Gp)
= a(u, 29) - ag(ug , 2)) +b(2, p) - <=, 20> - by(2, , Q)
= a(u-vy , Zg) — a(Ug—v, . 25) + (a-a)(vy , ) + b, (2, , p-Gg)
+ (by=by) (g, qp) - <f-fy L 2
Using (11.23) and the continuity of a and b, in the last formula, we deduce from (11.37)
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- (a-a ) (v, , 2.)
Ip-as Iy < B3¢ [ ¥ llu=uglly + { (x+xg) lu-vglly + sup MR }
1 2 2 zg€ Xy ”Zs”x1
b.,-b -
+{clp-gglly, + sup ( 1" 1||5)(25’q5)}+ sup Mooz ]
bz € Xy Zs lix, 25 € Xy ”2s”x1

This, together with (11.30), proves the theorem.

Remark 1.3 : Assume that hypotheses (11.19) and (11.22), hold and that the discrete forms a,
and b.g (i=1,2) are the restrictions to the spaces of discretization of the continuous forms a and
b, (i=1, 2) respectively, and that f and f; coincide. Then, the previous estimates can be

substancially simplified as follows :

(11.38) Ju-ugll, < c(l+og')  inf lu-wgll,
2 Wy € Kog(gs) 2
and
(11.39) ||D—D5||M1 < c(1+B7)(T+o; ) ( inf ||U—w8||,<2 + inf Ilp—qf,llM1 )
Wy € Kps(gg s € Mys
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I11. Variational formulation of the Stokes problem__in weighted

Sobolev spaces.

We are interested in solving the Stokes problem in the domain Q = ]-1,1 [2 : thus, given a
force field f in Q and a viscosity v > 0, we Took for avelocity field u and a pressure p (defined up
to an additive constant) such that the following equations are satisfied
(. -VvAu+gradp=f inQ |,

divu=0 inQ ,
together with a Dirichlet boundary condition on the boundary 8Q of Q; we shall first study the
homogeneous case
(111.2)  u=0 ondQ
Since we want to study a spectral Chebyshev approximation of the Stokes problem, we first give a
variational formulation of (I11.1)(111.2) in terms of weighted Sobolev spaces, the weight being
precisely the Chebyshev one in each variable. Then we use Theorem Il.1 to prove the well-

posedness of the variational problem. Finally, we extend the results to the case of non hamogeneous

boundary conditions.

[I1.1. The weighted spaces and the homogeneous Stokes problem.

Let us briefly recall some basic material about weighted spaces of Chebyshev type (for
further details, see e.q. [CHQZ][Ma2]). If p(T) = (1-22)""2 denotes the Chebyshev weight on the
interval ]-1,1{, let

La-1.1 = {0 1-1,1[ > R ; [ 0*(@) o(8) dL < +oo )
be the Lebesgue space associated with the measure p(t) dt, provided with the inner product
(1113 (o), = [, o) w(D) o(t) dt

_ 172
and the norm "'”0.9 = (),

A scale of weighted Sobolev spaces is defined as follows : for any integer m > O, H;“(—1 )
is the subspace of Lg2(—1 ,1) of the functions such that their distributional derivatives of order
< m belong to Lf(—l ,1) ; it is a Hilbert space for the inner product associated with the norm

m 2 172
(11.4) ||¢|\m,g:(zk=o l[p]k'g) )
where
k k
(M18) ol =lld*p/dc [,

Forareal numbers=m + o, 0 < < 1, we define H:(~1 ,1) as the interpolation space between
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H;"(—l ,1) and H;"”(—l ,1) of index « (cf. [LM]); we denote its norm by l|.!|sg :
Finally, we can apply a rotation and a translation to define similar Sobolev spaces on any
segment of length 2 in R%. We use the same notations as before to indicate them, as well as their

norms.

The generic point in the square Q will be denoted by x = (x,y). We introduce the vertices
a,,J€Z/4Z, of Q (where a,, , follows a counterclockwise), and call I' | the edge with vertices
a, anda, ; for any edge FJ ,J € ZZ/47, n is the unit outward normal to Q on [y and T, the unit

vector orthogonal to n,, directed counterclockwise.

My
a -a < a
o = 9y D I
v
 \1
P
¥ Q My M
<
Ty
Oy
a| '[T all
nul
Fiqure 1.1

The square Q.

The Chebyshev weight an Q is defined as w(x) = p(x) p(y). Let

Li(Q):{V:Q—»[R ;JQ 02(x) W(x) dx < +oco }
be the Lebesgue space associated with the measure w(x) dx, provided with the inner product
111.6) (o0, =[q 00x) w(x) w(x) dx
and the norm I|.||0M = (.,.);’2.

Next, a scale of weighted Sobolev spaces is defined as follows : for any integer m > 0,
H{L’(O) is the subspace of Li(()) of the functions such that their distributional derivatives of
order < m belong to Lf,(O) ; it is a Hilbert space for the inner product associated with the norm

m
(7)ol =X, o lolE D2
where
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(1.8) ol = (. I3/aday | )"
For areal number s =m + o, 0 < &« < 1, we define HZ(Q) as the interpolation space between
HI(Q) and HS”(O) of index o; we denote its norm by .||, . -

Being concerned with homogeneous Dirichlet boundary conditions, for any integer m > 1,
we consider the closed subspace of the functions of H (Q) which vanish on the boundary 8Q
together with all their derivatives of order up to m-1 (the traces being defined in the sense of
[LM]) ; this space, denoted by HY ((Q), is the closure of D(Q) under the norm of HT(Q) (see
[BM, Prop. 11.9]). Due to the Paincaré inequality, an equivalent norm on HS'O(O) is the seminorm
|l o, - The dual space of HZ)“O(O) will be denoted by H_™(Q) ; whenever the space Li(o) is
identified to its dual space, we have for instance

(11.9)  H.'(Q) = { f+8g/0x + 8h/8y, (f,g.0) € [LA()]*)

Now, we go back to the Stokes problem (I11.1)(I11.2). Assume that f belongs to [H;1(O)]2. A
weighted variational formulation of (111.1) is obtained by requiring that the first equation in

(H1.1) is satisfied in [H;1(O)]2, and the second equation in Li(Q). In order to satisfy also

(111.2), we define the space
(HL10) X=X, =X, = [H] (],
in which we look for the velocity. Since the pressure p is defined up to an additive constant and
div u has zero average in Q, we introduce the closed subspaces
ey My={ael(Q);f, ax) wx dx=0}
and
(1.12) My={qel%(Q);[, a0 dx=01} |,
in which respectively we look for the pressure and we choose the test functions to enforce the
divergence-free condition ; this choice will be justified later.

Thus, for any tin X', we consider the following variational formulation of the Stokes
problem (H1L.1)(111.2) : Find (u,p) in X x M, such that
(111.13) VveX, v, gradu.grad (vo) dx - [, div (vo) pdx = <fv>

VgeM,, [, divugudx=0

This formulation will turn out to be a particular case of the abstract variational system (11.1),
provided we define the bilinear formsa: X xX - Randb,: Xx M, - R (i = 1, 2) respectively
by
(H.14)  aluyv) =-v<Auyv>=v IQ grad u. grad (vw) dx

(I11.15)  b(v,0) = <v,grad q> = - [, div (vo)qdx




—14-

(111.16)  by(v,9) = - (divv,@), =~ [, divvgwdx
Note that we have

(H1.17) K, ={veX,divivw)=0inQ}

and

(H1.18) Ky,={veX,;divv=0inQ}

We have at once the following result.

Proposition tI1.1: The forms a: X xX - Rand b;: X xM, - R (i =1,2) are continuous.

Proof : It is a straightforward consequence of the continuity of the mapping :

0 > w ' grad (gw) from H;’o(o) into Lf,(Q). In order to prove this result, we write

1 x/(1—x2)
W™ grad (gw) =grad ¢ + ¢ | /(1-y2)

and, due to Hardy's inegquality (see [N, Chap. 6, Lemme 2.1}), the terms ¢ x/(1-x2) and
¢ y/(1 —gz) can be bounded by the norm of ¢ in H:),o(O) (see [CQ2, Lemma 1.2] for details).

Thus, in order to apply Theorem I1.1 to probiem (I111.13), we have to check the inf-sup
conditions (11.8)(11.9) and (11.13). (i =1, 2).

[11.2. The inf-sup condition for a.

Let us first deal with the form a. For some technical reasons, we introduce the weighted
Sobolev spaces relative to the inverse of the Chebyshev weight : for any real number s > 0, the
spaces HT/D(—l ,1) are defined in the same way as the spaces HE(—] ,1) with p replaced by 1/¢ and
provided with the norm II.IIS.”P ; the spaces H3,(Q) are defined in the seme way as the spaces
H(Q) with w replaced by 1/w and provided with the norm ”'“5,1/1.) . for any integer m > 0, we
denote by HT/w,O(O) the closure of D(Q}) under the norm Il.nmﬂw . We recall the following result
due to [BM].

Lemma .1 For any integer m > O, the mapping: ¢ — w'’? ¢ 1s anh isemorphism from
HE o(Q) onto HE'(Q) and from HF'(Q) onto HY,  ((Q) .

Now, we are in a position to prove the following proposition.

Proposition I11.2 : There exists a constant o > O such that

a(u,v)

(H1.19) VYueK,, sup ——— >]u ,
: I, > e

veK1
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alu,
(111.20) VveK,, sup —(l-l—‘i?l)(||v||1w
llull; ., :

uEK2

Proof : Let us start with (I11.19). If u belongs to K, , then there exists ¢ in Hg(o) such that
u=curl ¢ (see e.g [GR, Chapter 1, Thm 3.1]); since u is in X, ¢ belongs in fact to Hio(o).
Definev = w™' curl (pw). By Lemma l11.1, 9w belongs to H?/w,o(o)’ hence v belongs to Hl),o(o)'
with

Ivll,,, <clul,,,
Moreover,

a(uw) =v [, (curlu) (curl (vo)) dx=v [, Ag Algw) dx
According to [MM, Lemma 3.2], there exists a constant ¢ > 0 such that

[o Ao A dixcloll,
We conclude that (111.19) holds.

In order tocheck (111.20), we use a similar argument. If v belongs to K2 , then there exists

¥ in H?/u,o(o) such that v = curl y. We set u = curl (wm"), so that u belongs to K, , and we

conclude as before.

[11.3. The inf-sup condition for b. (i = 1, 2),
Next, we check the inf-sup condition (11.13), for the forms b, (i = 1, 2). To this end, we

recall some trace and regularity results in weighted Sobolev spaces, due to [BM].

With the notations of Figure 111.1, we have the following lemmas.
Lemma 111.2 [BM, Thm 11.3] : The trace operator R : v — ( YIr, )y e zsaz 'S linear continuous
from the space H!(Q) onto the subspace of TU, . z/az HSM(F ) of the functions ( ¢
satisfying
(111.21) VJeZ/4Z, ¢,(a) =9, (a)

)J € 2/4Z

Moreover, the operator R admits a continuous right inverse.

Lemma 1.3 [BM, Thm I1.4] : The trace operator S: v — ( Vie, 8v/0ny ), z/ag IS linear

continuous from the space Hi(o) onto the subspace of T . 7,4z (H:M(I‘J) x H:M(I‘J)) of the

functions (@, , Ry )¢ z/az SatISTYing
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(111.22) VYV JeZ/4Z, LpJ(aJ):LpJ+1(aJ) ,
(89,781 )(a)) =y, (a)
Ry(ay) = - (B9,,,/8T,,,)(a))
Moreover, the operator S admits a continuous right inverse.

Lemma 111.4 [BM, Thm 11.2] : The trace operator T : v — ( Vir,  BY/8N ) ) ¢ g/ag 1S Tinear

continuous from the space Hf,w(o) onto the subspace of T1 | 7,47 (H?;:(FJ) x HJfS(I‘J)) of
the functions (@, , R, ), . z/az S8tisfying (111.21). Moreover, the operator T admits a

continuous right inverse.

Finally, consider the Dirichlet problem

(111.23) ~Ag=y inQ
p=0 ondQ
Lemma 111.5 [BM, Thm I[Il.1] : /f y belongs to Li(()), then the solution ¢ belongs to

2 1

H.(Q) NH,(Q) and

(.24) ol <clixly.,

I g belongs to L%, (Q), then the solution ¢ belongs to HZ, (Q) N H}(Q) and
(”IZS) ”41"2'1/“ SC"XHOJ/N

Now, we are in a position to prove the following propositions.

Proposition 11,3 : There exists a constant §, > O such that
b, (v,
(111.26) vYqeM,, sup Dplv.a) > 8, llally .,
vex vl '

Proof : Let q be any function in M, . We consider the unique solution ¢ of (I1.23) with y =q, for

which we have

loll,, <clally.,
We want ta find a function  in H2(Q) such that
(H1.27) curly=-grad ¢ on0Q

’

or equivalently

(111.28) VJeZ/4Z, By/81;=-0¢/0n; and By/8n ;=089/3T,;=0 onl
To this end, we set

(111.29)  y(a) =0

J

y
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and, for J = I, [II, IV, | successively,

(N1.30)  Vxel,, w0=y, () -[r (8e/0n)) x([a,_, ,x]Ddo ,

where ¥([a,_, ,x]) is the characteristic function of [a; , ,x} in ;. By Lemma 1.3, 8¢p/dn,

belongs to HSM(I'J) and satisfies

(11.31)  VvJe Z/4Z, (8¢/8n,,,)(a;) =(8¢/81 ) (a) =0
(8g/8n )(a)) = - (Bp/01 ,)(a) =0

Hence, ¢ is in L§(|‘J) and 8y ,/0T; = - 8¢/8n, isin H:M(FJ), so that g belongs to HZM(I'J)

(see [BM, Lemma |1.4]). Moreover, since q is in M, , we have

Ljearaz JrJ (39/8n) do=[, Ay dx=-[, qgdx=0 ,

’

hence, the functions y ; satisfy
VJIeZ/AL, y a) =y, (a)
We also have by (111.31)
VJeZ/AZ, (By,/8T))(a; ) =(By /8T )(a)) =0
Thus, the functions ( ¢, 0 ), 7,47 Satisfy the compatibility conditions (111.22). By Lemma
[11.3, there exists a function y in Hz,(Q) such that
y=y, and O0y/On;=0 onl,, JeZ/4Z
and which satisfies
11032)  lly, <L yezraz MWollse, <clioly,

Finally, we set v = grad ¢ + curl y . Thanks to (111.27) and (111.32), the function v belongs to X
and satisfies

(11.33) vl , <cllally
Moreover, we have div v = g, so that
by(v, @) = [ 0 W(x) dx
This formula, together with (111.33), gives the proposition.

H

Remark [lI.1: Note that the proof of Proposition I11.2 utilizes the condition jQ q(x) dx = 0 in
the definition (111.12) of M, .

Proposition 111.4 : There exists a constant B, > 0 such that

b, (v,
(111.34) wgeM,, sup a0
vex vl

> 8, llall,.,

Proof : The proof is similar to the previous one. Given any function g in M, , denote by ¢ the
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solution of the Dirichlet problem (111.23) with ¥ = qw. Since qw is in Lf,w(O), Lemma 1.5
implies that ¢ belongs to Hf,w(o) , with
lolly. 1, < clally,,
Next, we build up a function y in Hf,w(o) such that again (111.27) holds. First, we define its
trace on 8 by (111.29) and (111.30). By Lemma I11.4, 89/dn belongs to Hy/ (" ) = L'(I" ),
thus ¢, is well-defined and belongs to H?js
VJeZ/4Z, vy,(a)) =vy,,(a,)

Applyingagain Lemma |11.4, we see that there exists a function ¢ in HZ, (Q) satisfying

(I). Moreover, since g is in M, , v satisfies

17w
y=y, and Qy/3n,=0 onl,, JeZ/4Z
and such that
(111.35) My 1o <€ 2 yezraz Wyllssanr, <cllol g
The function v = grad ¢ + curl y belongs to X and satisfies
(11.36) vl y,, <cllalo, .
Finally, we setv = vw ™. By Lemma [I1.1,
Iy, < e ¥l
while on the other hand div (vw) = divv = - qw, so that
by(v,q) = [, & wx) dx
This proves the proposition.
Remark (1,2 : Here, we have used the condition [Q g(x) w(x) dx = O in the definition (111.11)

of M, .

[11.4. The existence and unigueness results.

Thanks to Propositions 111.2, [11.3 and I11.4, we can apply Theorem Il.1 to the variational
problem (111.13), and obtain the main result of this section.
Theorem llI.1: For each tin X', there exists a unique variational solution (u,p) in X x M, to

the Stokes problem (111.1)(111.2). Moreover, the following inequality is satisfied for @ constant
c>0

37y Al , +lell,, < clifll

Remark I11.3: In the Stokes problem (111.1)(I11.2), the pressure is defined up to an additive
constant. In the variational problem (111.13), this constant is fixed by the condition
(11.38) [, p(x) w(x) dx=0
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(which is not the usual one - see [GR, Chapter |, Thm 5.1][BMM2, (V.2)] for instance).

We conclude this section with the case of non homogeneous Dirichlet boundary conditions,
which we write in the form
(111.39) u=9¢, onl,, JeZ/4L
The following result holds.
Thearem [11.2: For each fin X' and for each (@), . 5/az 1" T, c 274z HgM(FJ) satisfying
(111.40) VJeZ/4Z, ¢,(a)) =9, (a))
(1.41) Zyegag Jr, 95-nyd0=0

there exists a unique variational solution (u,p) in [H:)(O)]2 x M, to the Stokes problem
(11.1)(11.39). Moreover, the following inequality is satisfied for a constant ¢ > 0

(111.42) ”U"“,J + ”p"(),w <c( ”f ”x + ZJez/qz ”[pJ"3/4'g )

Proof : inorder toapply Theorem 1.1, we look for a function v in H(L(Q) such that
(111.43) dive,=0 inQ and w,=¢; onl,, JeZ/4Z
or equivalently, setting u, =curl y, for a function y in Hi(o) such that
(111.44) VJeZ/4Z, By/8t;=¢,. n, and Oy/0n;=-¢,.T;, onl
To this end, we set

(111.45)  y(a) =0 ,

and, for J = I1, 111, IV, | successively,

J

(111.46)  Vxel,, w0=v,_(a ) +[r (9;.n)r(a,, xDdo
where w([a,_, ,x]) is the characteristic function of [a;_, ,x] in ;. For J € Z/4Z, the pair
(y, ., - 9,.T,) belongs to H/*(T ) x H"“(T")) and, due to (111.40) and (I11.41), we have the
conditions
VJeZ/4Z, vyay)) =y, 4(@) ,
(By /0t ))(a)) =-(9,,; .ny, ) (@)
(p,.ny) (a)) =(By,,,/87,,)(a))
It follows from Lemma 111.3 that there exists y in Hi(()) satisfying
VJeZ/4Z, y=y; and Oy/dn;=-9¢,.7, onl,

whence (111.44); moreaver, we have

lwllp o, <€ 2Ly ezram 19,4ll5/0,

Next, we define u, = curl y and, using Theorem [11.1, we consider the unique salution (u,p) of
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problem (I11.13) with <f,v> replaced by <f,v> - a(u, , v). Clearly, the pair (u=u+u_,p) is
solution of the Stokes problem (111.1)(111.39) and satisfies (111.42).

Remark [l1.4: The previous result can also be proven by a direct application of the abstract
Theorem 11.1. As a matter of fact, if ( ¢,) . 5,47 DelONgs to ]'[J ¢ 2/47 Hg’q(I‘J) and satisfies
(111.40), by Lemma I11.2, there exists a vector field u, in [H(L(O)]2 such that

(111.47) “t':lrJ =9, ,JeZ/4L

and

(11.48) lugly , <02 e z7a2 1941574,

Let (u',p) be the solution in X x M, of the variational problem

(111.49) VveX, a(ﬁ',v)+b1(v,p):<f,v>—a(ut‘l,v)

VgeM,, b,(u,a) =-b,(u,q)

Thanks to Theorem 1.1, the continuity of the forms a and b, and (111.48), we have

'l o +IPllg, < e Ll + 2y ezraz 19,0l5/4, )

Finally, let us setu=u' +u; . Then, (u,p) is the solution of the Stokes prablem (111.1)(111.39).

Indeed, the only nontrivial condition to check is the continuity equation. By (111.49) we have
(111.50) vqel%0) /[, ax)dx=0, [, divuguwdx=0
Condition (111.41) implies that
[o divudx=0
which, together with (111.50), yields divu = 0 in Q.
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IV. A Galerkin method for the Stokes problem.

Henceforward, we fix an integer N > 3. In this section, we will study the convergence
properties of a spectral Galerkin approximation to problem (I11.13). Such a method is never used
in practical computations - being less efficient than a tau or a collocation scheme. However, we

consider it here because it is the simplest method which can be handled by the theory of Section 11

and in which the main difficulties are present.

1¥.1. The discrete problem.

We look for an approximate solution of (111.13), the components of which are algebraic
polynomials of degree < N in each variable. This solution will be defined by a Galerkin method
using the variational formulation of Section [11. A suitable orthogonal basis in order to study the

algorithm consists of the Chebyshev polynomials of the first kind.

Let us begin by recalling some basic material about Chebyshev expansions. We denote by
T,(x), m =0, 1, ... the Chebyshev polynomials of the first kind. They are defined by
T..(x) = cos (m Arcos x), and satisfy the orthogonality relation
vy LT T -t 2 d = (/D5 .m>0,n>0
where ¢, is equal to 2 and ¢ isequal to | for m > 1, and §_  denotes the Kronecker symbol.
Moreover, for any m > 1, the Chebyshev polynomials satisfy the differential equation
(1v.2) vEgel-1,1], ((1-tH"21 (@) +m?T (1) (1-g5) 2 =0
and the relations
(IV3) vgel-10], T ,(@)=2¢7 ([@)-T ,& |,

(Iv.4) vigel-1,1[, T7.(@)=T_,(C)/2(m+1)-T_ (T)/2(m-1)

Let PN(—1 ,1) denote the space of the algebraic polynomials of degree < N in one variable,
restricted to the interval ]-1,1[. Each ¢ in P, (-1,1) can be expanded as
o) = T 8. T (©), with
(VS) B, =(2/me) [, o) T (@) (1t dc ,0<m<N
P;(—l ,1) will be the subspace P\(-1,1) N Hé(—l ,1) of the polynomials vanishing at the end
points T = +1.

Next, we denote by P(Q) = [P (-1 ,1)]®2 the space of the algebraic polynomials in R
which are of degree < N in each variable. Finally, we set P (Q) = P,(Q) N H (Q).
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Let us now introduce the Galerkin approximation to problem (111.13). We look for the
approximate velocity uV in the space X = [P;,('O)]2 and for the approximate pressure pN in
P\(Q). Weconsider the following problem : Find (uN, pN) in Xy x Py(Q) such that
(1V.6) VveXy, v/, gradu" grad (vo)dx- [, div (vo) pNdx=<tv>

VaePy(Q), [ diva'qudx=0

However, as it will be discussed in the next subsection, in order to have a well-posed discrete
problem, we must restrict the space of the pressures to a proper subspace M, of PN(O).
Similarly we restrict the space of test functions for the divergence free—condition to a proper
subspace M, of PN(O). Then, we obtain a particular case of the abstract approximate problem
(11.17), if we set Xys = X2,S = XN provided with the norm of X, M18 = Mw and M28 = M2N provided

with the norm of Li(()), and if the forms a; and b (i = 1, 2) are respectively the forms a and b,
(i=1, 2) defined in (11.14) to (111.16).

in order toapply the abstract convergence results of Section 11, we have to choose the finite
dimensional spaces M,, and M, for the pressure, in such a way that the inf-sup conditions for
the above forms hold. In the next subsection, we characterize those pressures which cannot satisfy

such a candition for the forms b1 and b2 .

1¥.2. The spurious modes of the pressure.

Spurious or "parasitic” modes of the pressure are those components of the numerical
pressure that are not controlled by the discrete equations which approximate the Stokes system.
Parasitic modes in finite difference or finite element methods have longly been investigated (see
e.g. [6R]). In spectral methods, attention on such a problem was first brought by Y. MORCHOISNE
[Mo]. The characterization of spurious modes for various spectral methods of mixed

Fourier-Legendre or fully Legendre type has been carried out by [BMM1][BMM2].

Our aim is to characterize the polynomials q in PN(O) which satisfy, respectively for i = 1

or 2, the following condition
(IV7), VveXy, blv,g) =0
Let Z,, denote the subspace of all q in P\ ,(Q) for which (IV.7), holds. It is clear that such

polynomials cannot verify (If.1 3),. Moreover, if M, contains a non trivial element of Z,, , the

pressure in the solution of the discrete problem is not unique.
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Let us first deal with the form b, defined by (II1.15). We recall that the palynomials 7',
m=1, .., N+1, form a basis of P, (-1,1) which, due to (IV.1) and (1V.2), is orthogonal with
respect o the inner product

1
(Iv.8)  (uv)y, =, u@v(@) (1-t)"?qr
Precisely, one has
LI : 2\1/2 2
(v.9) [, T 15 (1-£%) " dg = (n/2) m®§_

N ,mMm>0,n>0

Lemma V.1 : The dimension of the subspace 1, isequal to 8.

N o
Proof : Let us expand each q in Zyy as q(x) = 2.\ o Qoo T (X)T (4). Condition (IV.7), is
equivalent to the conditions

(IV.10) Vv ePy(Q), [q (8(vw)/8x)qdx=0

and

(IV.11) VvePy(Q), [, (8(vw)/8y)qdx=0

Let us consider first (1Y.10). A basis in P;(Q) is given by the polynomials

(IV.12) v (0 = (1) TL00 [T ()-T (W] 1 <m<N-T,2<n <N,

where «(n) is equal to O if n is even and to 1 if n is odd (we use here the fact that

T (£1) = (£1)™). From equation (IV.2) and the orthogonality condition (IV.1), it is clear that
(I¥.10) is equivalent to the set of relations

(IV.13) G = Cotr Gy =0+ T SMEN=1,2<n <N
Working out condition (I1V.11) in a perfectly symmetric way, we end up with another set of
relations, namely
(V.14 G = Copm Geiman =0 2<M <N, 1< N-1

The relations (1V.13) and (1V.14) provide an orthogonal basis for Z,, . This is given by the
four modes T,(x)Ty(y), TyOGDT (), To(x)T(Y) and T (x)T, (y) (since the corresponding
coefficients do not appear in (1V.13) and (1V.14)), and by four other polynomials, the non-zero
Chebyshev coefficients of which are respectively Gy, , G, , Gy4 and Gy, Plus the coefficients defined

from these by the relations (1V.13) and (IY.14). This proves the lemma.

The next lemma allows us to find another basis for Z1N , Which is easier to handle.
Lemme 1V.2: The set of all elementsin P(-1,1 Ywhich are orthogonal with respect to the

inner product (. ,.)gto the space P;(—l ,1) Is the subspace of dimension 2 spanned by
{ TPI‘I ' T?"l+1 } '
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Proof : Each polynomial ¢ in P (-1,1) satisfying ¢(+1) = O can be written as
0(z) = (1-t2) 9(¥), where @ belongs to Py_o(=1,1). Expanding ¢ according to the basis
{T}1 emen.y and using (1V.9), we see that g is orthogonal to Ty and Ty, 1 - On the other hand, the
subspace P;(—1 1) ={9ePy(=1,1); ¢(+1) = 0} has codimension 2, hence the lemma is

proved.

Corollary 1Y, 1: The set of all elements in P\ (Q) which are orthogonal with respect to the
inner product (.,.) to the space {v € Py(Q) ;v(£1,£1) =0} is the subspace of dimension 4

spanned by { Ty, Ty, 82

Proof : Each polynomial v in P\ (Q) satisfying v(+1,£1) = O can be writtenas v = w + 2, with
V(x,y) e, wxt,y = 2(x,+1)=0

(take for instance w(x,y) = ((1+y)/2) v(x,1) + ((1-y)/2) v(x,-1) and z = v — w). Hence, it

follows from Lemma IV.2 that { T\, Ty, , }®2 is orthogonal to { v € Py(Q) ;v(x1,£1) =0 }. On

the other hand, since this space has codimension 4, the corollary is proved.

Noting that, if v belongs to X, , then w ! div (vw) belongs to P, (Q) and is equal to O in
(£1,+1), and recalling the proof of Lemma IV. 1, we obtain the following characterization.

Proposition V.1 : The subset Z,, is the vector space of dimension 8 spanned by { To o Ty }®2
andby { Ty, Ty, 182

Remark V.1 : Note that the basis in { Ty, Ty, }®2 is a simple linear combination of the

orthogonal basis of Z,, defined in the proof of Lemma V.1, as it can be seen by using (1V.4).

We consider now the form b, defined by (111.10). First, we recall the following result, due
to [BMM2, Corollaire V.1]. Let us for a while denote by L, »m=0,1, .. the Legendre
polynomials.

Lemma IV.3: The range of X by the divergence operator is the subspace Dy of P\ (Q) of

codimension 8 defined by

(IV.15) Dy={rePy(Q);r(z1,£1)=0andV qe{Ly,L,}%, ], r(x)ax) dx=0)

’

Remark [V.2 : The lemma can also be established by a proof similar to the one of Lemma IV.2,
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by using the properties of the Legendre polynomials.

We can now characterize the space Z,, . Let us introduce the palynomial gy in P\ (-1,1)
defined by
(IV.16) Vo ePy(=1,1), [, (@) (@) o(t) dt = [, (L) dt
(i.e. qy is the orthogonal projection of 1/p onto P\ (-1,1) with respect to the inner product
(0,
Proposition 1V.2 : The subset Z,, is the vector space of dimension 8 spanned by { gy , Ty yo?
and by { Ty, T, g 182

Proof : The subspace Z,, is precisely the orthogonal space to Dy in P (Q) with respect to the
inner product (.,.) , . It follows that Z,, has dimension 8. Next, from (IV.15) and Lemma IV.2, we
deduce that Z,, contains the subspace spanned by {Tﬁ  That }®2. In order to obtain the remaining
components, we have to translate the orthogonality relation in (IV.16) in terms of the inner
product (.,.),,. To this purpose, we observe that, for any ¢ in Py (-1,1), if X is the coeficient of N
inr, we have (see [DR, § 1.13])

[ e L@ dt = n [, £ L) d = x 2% (ND2 7 (2N)1 (N 1/2)

(g,T ), =2 @ T, = m 2™,
so that
(VA7) W ePy(=1,1), [.; o(D) L(©)dL =[2" (N2 /7 (2N)1 (N+1/2)] (9.T,),,

Using this property and the definition (1V.16) of gy , we deduce fram (IV.15) that Z,, contains the
subspace spanned by { g , T, ye2,

Finally, let us check that the polynomials Ty, Ty, , Qy and T are linearly independent
(which will imply that the 8 elements of { g, , Ty 22 U { T}, Ty, }®° are linearly independent).
Assume that

MOy + R Ty + Uy T+ U T,y =0
Using (1V.4), we have

NGOy = ()\2/2(N—1)) Ty — Uy Ty - (Uz + N /2(N+1)) Ty
Since Nis > 3, T = 1 isorthogonal to Ty, _,, T and T\, with respect to ("')1/9 , 50 that

0=, [} (0 (1=t dg =x, [, (1-tDdg =4n,/3
whence N, = 0. Since the T, 's are mutually orthogonal with respect with (.,.)1,9 , we obtain at
once A, = Uy =Y, = 0.
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Remark 1¥.3 : In this work, we are not concerned with the Stokes problem in the cube }-1, 18
However, note that, in the three-dimensional case, the dimension of the space Ly i=1,2)
depends on N : it is equal to 12N+4. Indeed, by the same techniques as in [BMM2, §5], it is an easy
matter to prove that Z,, (resp. Z,,) is spanned by { T, , T, }®3 (resp. { gy, Ty }®3) and by the
(12N-4) independent modes of
T Tha g del Ty T JoP =1, DT U T, Ty, yoPy (=1, De{ Ty, Ty, 3]
UP(-1,Def Tho That Jo{ Ty, Ty.; H

1¥.3. An inf-sup condition for the forms b, (i = 1, 2).

The characterization carried out in the previous section suggests the most direct choice of
the test and trial spaces M, and M,,, for the pressure. Precisely, we choose for M., the orthogonal
complement to Z,, in P\ (Q) (i =1, 2), i.e.

(Iv.18), My ={qeP(Q);VreZ,,(gr), =0}
Due to (1V.7), , M, is characterized as

(IV.19) M,y ={w " div(vo),veXy,)

and

(1V.20) M, ={divv,veX}

Note also that M, is contained in M. (i = 1, 2).

In order to check the inf-sup conditions (11.22), for b, over the spaces X, x My (i=1,2),
we apply an abstract result of tensor algebra due to [Be, Chapter V, Appendix B], which we recall
here. Let H be a Hilbert space, and denote by (.,.) its inner product and by ||.|| the correspanding
norm. For any pair of planes A and B in H, we define the gap between A and B as the quantity
(1v.21) 8AB) =inf{lo-wl;pcA yeBandllell=lyl=1)}
Setting
(1v.22) n(AB)=sup{(p,y) ;9 €A yeBand|gl=lwl=1}
one has
(1IV.23) 6%(A,B) =2 (1-1(A B))

Lemma V. 4: Let (A,B) beapair of planes in H, the intersection of which is {0}. Any
glement q in H®? which belongs to (A®%)* and to (B®2)* can be written
(IV.24) q=r+s

where r and s belong to AteBt and BroA® respectively and satisfy
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av.2s) sup {lIrll, sl } < C1+278(A,B)2 |lql

Proposition IV.3: Let the space M, be defined by (IV.18), . There exists a constant B, > 0
independent of N such that

b (v) ) I -
(IV.26) VY qeM,,, sup ﬁ > B, N llall
tw

véXN

Proof : In the space H = P\((-1,1) provided with the inner product (. ,.)p ,define A= {T,, Ty}
and B = { T, Ty, }, and recall that, due to Lemma IV.2, BL is the space (1-t? Py_o(=1,1).
According to Proposition IV.1, M, is equal to (A%t N (B®2%)L Since Nis » 3, AN B is {0},
hence, by the previous lemma, each g in M, can be written as in (1V.24), with
(IV27)  rw) =(1-D T a T (0 2 ePy (-1,1) |
and
(IV.28)  s(,0) = (1A To b T(W) b€ Py o(~1,1)
Using (1V.2), we write

ro= (192 T e ()T (0 (1-x3)7172

= (3/80[ (132 (1= T & () T (0/m?] = 3(vw)/ox

where v, defined by

Vo0 = - (1) (1-)) To 71 8 (0 To(0/m?
belongs to P;(Q). Moreover, we have

IIEJv/axIIOM <c IIc‘l(vw)/BxIIOJM =clirolly 1, <clirlly,,
and, by the Poincaré inequality, [lvll, , < clrlly,, - Using the following inverse inequality [CQT,
Lemma 2.1], valid for any real numbersr ands, 0<r <s,
(IV.29) Vo ePy), lol,,<ecN*"gl, .
we can control the norm |||, ., of 8v/8y by

lov/aylly ., < o2 lIFly,,
Working out in a symmetric way for the component s of g, we end up with an element v = (v,w) of
Xy satisfying
(IV.30)  w 'div(vo)=-gq
(so that by(v,q) = ||q||§'w) and
av.31)  Ivlly, < N2 Clirll,, +lsll, )

It remains to estimate the gap (1V.21) between A and B. To thisend, set ¢ = N T+ X, Ty
inAandy =y, Ty + U, Ty,q inB. From (IV.1) and (1Y.9), it follows that
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(v32)  llollf, = F +22/2) and Jliy, = 0 (N uf + (Ne1)* 0D
Moreover, we have
(T, ,Tr'n)Q =0 ifmiseven and (T, ,Tr'n)D =mm ifmisodd
(Ty Ty, =0 and (Ty, Ty, ), =N+
so that
(V.33) (o), I < TCIN U N+ I Hug LN+ + G [ [ (N+ 1))
From (1¥.32) and (1V.33), we conclude that
(IV.34) VoeA Ve, [(ou),l<ecN ol lul,
Since for N > 3 the polynomials T, T, Ty and Ty, are linearly independent, 6(A,B) is greater
than 0. Then, due to (1¥.22), (1¥.23) and (1V.34), it is bounded from below independently of N.
Hence, the proposition follows from (1V.30), (1V.31) and (1Y.25).

Proposition 1V.4 : Let the space M,, be defined by (1V.18), . There exists a constant B, > O
independent of N such that

b (V,Q) el —2
sup  —2—T— >B,N"lall,,

(IV.35) VgeM
veX, vl

2N

Proof : In the space H = P (-1,1) provided with the inner product (.,.)D , we set now
A={q TylandB = { Ty, Ty, }; due to the definition (IV.16) of q , Al is the subspace of
Py_1(~1,1) of the polynomials having zerc average on (-1,1). From Proposition IV.2, we see that
M,y is equal to (A®2)l N (B®2)l. Thus, by Lemma 1V.4, each q in M, can be expanded as in
(Iv.24) with

(V36) rx) =P Tl a WL.(x) ,a € ,(-1,1)

and

(IV37)  s(x0) = (1) T b (L) b €Pyo(-1,1)

(here, we find more appropriate to use a Legendre expansion for r and s). Following the proof of
Proposition 1V.3, but using the differential equation satisfied by the Legendre palynomials (see
also [BMM2, §V]), we define an element v = (v,w) in X, such that

(Iv.38) divv=-q

(s0 that by(v,q) = ||q||§’w) and

(V.39)  Ivlly, <eN*Clirll,, + sy, )

In order to estimate the gap between A and B, let ¢ = Ny Qy + N, Tyandy =y, Ty + Uy Ty, DE
arbitrary elements in A and B respectively. By (1V.16) and (1V.4) we have
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1 1

(g > Tdp = )y Tl@ a8 = [T /2(m+1) =T /2(m=-1)],
s0 that

(qy Tp), =0 ifmisodd and (gy,T,), =2/(1-m%) ifm iseven
Thus flgll2 , > ¢ (A2 + \2). Moreover,

' 1

Gy » Todp = [, T(t)dt =0 ifmiseven and (q, ,Ti), =2 ifm is odd

As in the proof of Proposition 1V.3, we have again (1V.34), hence §(A,B) is bounded from below

independently of N. Thus the proposition is proved.
Remark 1Y.4 : Unfortunately, the constants involved in the inf-sup conditions (1V.26) and
(1¥.35) are not independent of N. However, we shall see that this does not corrupt the accuracy of

the approximation of the velocity in the homogeneous case.

iV.4. The inf-sup condition for the form a.

Let us denote here by K., (i = 1, 2) the discrete kernels
(1V.40) Ky={veX ;VveM,, blvg =0}
According to (1V.7).and (1V.18), , we actually have

Kiy={veXy;div(vw)=0inQ}

K2N:{v€XN ;dive=01inQ }

)

or equivalently

(Iv.41)  Ky=KNX, (i=1,2)
where continuous kernels K, are defined in (111.17) and (111.18). Moreover, by Propositions IV.1
and IV.2, we have

(IV.42)  dim K, =dim K,

Thus, by Remark 1.1, it is enough to check the inf-sup condition (11.19) for the form a.

Proposition I1V.5 : There exists a constant & > O independent of N such that

(IV.43) YueK, , sup alu,v) > & |l
veK,, IVl '

Proof : Let u = (u,v) be an element of Koy - BY (1V.41), there exists ¢ in Hio(o) such that
u =curl ¢. Since
o0 = - [ vEwde =] uxpdy

necessarily ¢ belongs to P\ (Q) (see also [S]). Thus the element v = w ' eur (pw) used in the
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proof of Proposition I11.2 to check the continuous inf-sup condition is indeed an element of

K, N Xy = K,y » whence the result.

Remark (V.5 : The constant x is the constant o« of Proposition 111.2, hence it is independent
of N.

IV.5. A convergence estimate.

We have proved abave that the abstract assumptions (11.19), (11.21) and (11.22), (i =1, 2)
are fulfilled with the present choice of spaces for the discrete velocity and pressure. Applying
Corollary 11.2, we derive the following result.

Theorem IV.1: For each integer N » 3, the Galerkin approximation (1V.6) to the Stokes
problem (111.1)(111.2) has a unique solution (u", p") in Xy x M,y , where M, is defined by
(1¥.18), . Moreover, the following inequality is satisfied

(V.44) [l + N 200"l <ty

for a constant ¢ > O independent of N.

We can obtain a convergence estimate for the velocity using the abstract error estimate
(11.35). To this end, note that by (1V.41), the inclusion (11.34) holds. Thus we get
(1v.45)  Ju-u"f,,<c inf  Ju-vyll

’ vy € Koy ’

We now recall a general result of polynomial approximation theory in the Chebyshev
norms. This result is due to [Ma2], except for the case m = O (where Hio(o) is the space Lf)(o)
and ﬂ,ﬂ is the truncation of the Chebyshev series) for which we refer to [CQ1].

Lemma V.S : For each integer m > 0, there exists a projection operator Tl 'T :
HT (Q) - P(Q) N HT ((Q) such that, for 0 <r<mgs,
(IV.46) Vg e H,(Q), llo-TIT0ll, <clr,m,9) N[loll,,

Using the previous lemma one can show that divergence-free vector fields can be
approximated by divergence-free polynomial fields with an optimal error estimate in the weighted
Sobolev scale.

Lemma IV.6: For each v in K,, there exists an element Qv of X, satisfying div (Qw) = 0 in

Q such that, if v belongs to H(Q) for a real number s> 1,
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(v.47)  lv-Qull, o <N Ivil,

Proof : A general proof, which applies to vector fields in R® as well, has been given in [SY]. For
convenience of the reader we give here a simpler proof, which however holds in the 2-dimensional
case only. Each v satisfying the assumptions of the lemma can be written v = curl ¢, with ¢ in
HZ 5(Q) N HE'(Q). Define gy in Py(Q) N HZ(Q) as gy = T3¢ and set Quv = curl g,. Then
(1¥.47) is a direct consequence of (1Y¥.46).

Using (1V.47), we derive from (1Y.45) the following convergence result.
Theorem 1Y.2 : Assume that the solution (u,p) of the Stokes problem (111.1)(111.2) belongs
to [Hi,(())]2 x HZ‘1(Q) for a real number s > 1. Then the approximate velocity u', as defined in
Theorem Y. 1, satisfies the convergence estimate
(1v.48)  fu-u'll, , <eN"®ull,

for a constant ¢ > O independent of N.

1¥.6 Computation of the pressure.

Unfortunately, it is not possible to establish a similar optimal result for the pressure, if
the discrete space of pressures is defined by (IV.18), . As a matter of fact, it follows from
Proposition IV.1 and Corollary IV.1 that the elements of M, are polynomials which vanish at the
four corners of the domain, while the exact pressure needs not satisfy this condition. Thus,
spectral accuracy in the pressure cannot be achieved.

The remedy consists in choosing as discrete space of pressures another supplementary space
to Z, in the space P\(Q), which exhibits better approximation properties to the functions of M,

and, at the same time, which fulfills an inf-sup condition asymptotically not worse than (1V.26).

From a general point of view, the new space M, of discrete pressures can be defined by
introducing a new subspace 71N of dimension 8 (which will be a suitable perturbation of Z,,) and
then setting
(1vV.49)

M,y ={aeP(Q);Vrel, . (qr), =0}
The space F'11N will allow the exact pressure to be approximated at a spectral rate if there
exists a real number X, 0 < X\ < 1, such that
(IV50)  Ppy(@ NM, <™,y
([\N] is the integral part of AN). This means that the elements of Z,, should be orthagonal to
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Pon(@) N My

On the other hand, as far as the inf-sup condition for b, is concerned, let 1, : M — My,
denote the orthogonal projection onto M, with respect to the inner product (.,.), - We make the
assumption that there exists a constant ¢ > O independent of N such that

(av.sh  vaeMy, laly, <clmal,,,

Proposition 1V.6 : Let T"I1N be a subspace of P\(Q) such that hypothesis (IY.S1) holds. There

exists a constant B, > O independent of N such that

b](v,q) -

(V.52) vqeM,, sup >8, N lall, ,

V& XN "v”1,w

Proof : Due to the definition (IV.18)1 of M, , it follows that one has for all q in Mm
(IV.S3)  VwveXy, bylv,g =b(v,mq)

from which we deduce

b n S
sup by(v,9) > sup (v, 9 S8, N 2 Ially
veX, vl vex, vl '

The result follows by using (1V.51).

Let K, denote now the kernel defined as in (1V.40), with M, replaced by M, . If (IV.51)
holds, ~K1N still satisfies (1V.41), thanks to (1V.53). Hence, both (1V.42) and Proposition V.5
are valid. Applying Corollary I1.2, we obtain the same result as in Theorem IV.1.

[heorem (V.3 : For each integer N > 3, the Galerkin approximation (1Y.6) to the Stokes
problem (I11.1)(lI11.2) has a unique solution (uN, pN) in Xy x F’lm , where F"m satisfies the
hypothesis (IV.51). Moreover, the following inequality is satisfied

(V54 Jull, + N2 Ry, < clitlly.

for a constant ¢ > O independent of N.

Remark 1V.6 : It follows from (IV.53) that, if (u", p") is the solution of (1V.6) in X, x M, ,

then (uN, rthN) is the solution of (1V.6) in Xy x M,y . In particular, the discrete velocity is

independent of the choice of the space of pressures.

We can obtain a convergence estimate for both the velocity and the pressure.
Iheorem |Y.4 : Assume that hypotheses (IV.50) and (1V.51) hold and that the solution (u,p) of
the Stokes problem (111.1)(111.2) belongs to [Hz)(())]2 x HZ”(O) for a real number s> 1. Then
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the approximate solution w", p" in Xy x M.y, as defined in Theorem IV.3, satisfies the
convergence estimates

(Iv.55)  flu-ull, , <cN'"°[ull,

(1v.56)  lp=p"lly,, <N Clull,, +1Ipl,_q )

for a constant ¢ > O independent of N.

Proof : It is a straighiforward consequence of (11.38) and (11.39), if we note that, due to

(1V.50),

int =gyl o, <Ip-TCaPlloo <N lpll, ¢ o,
ay € Myy

Now, we give an example of choice of the space M, (or, equivalently, of Z,,) for which
(1v.50) and (1¥.51) hold. The argument is an adaptation of [BMM2, § V.3].

Let us recall that Z,, is spanned by { T, ,T, 192 and { LI 182, By (1V.4), the
polynomials sy = Ty and t =Ty, admit the Chebyshev expansions
(IV57)  sy= Do 0 T =2N(Ty  + Ty gt + T2y * )
(IV58)  ty= T g BT, = 20Ne1) (Ty + Ty y + oo+ Typy o)
Let us define the polynomials
(IV.59) Sy =Zyycmen Xn T = 2N (T # Ty ge o T )

where m, is the smallest integer > AN for which g is # 0, and

H

(1v.60) fN = ZkN<n<N By Th= 2N+ 1) (Ty 5 + Ty g+ +Tn0)

where N, is the smallest integer > AN for which @no is # 0. Finally, let us set
(IV.61)  Z,y=Span [ (T, 7,122 U (5,1, )°2]
and define M, by (1V.49).

Proposition 1V.7 : The space f'lm defined by (1V.49) and (IV.61) satisfy the hypotheses
(1¥.50) and (1V.51).

Proof : The inclusion (1V.50) holds by construction of ~Zm , due to the definitions (1V.59) and
(1V.60) of s and f, .Let us check (IV.51). To this end, we shall exhibit the inverse mapping of the
projection T, . For each element y in { SN }®2, we denote by y the corresponding element in

{sy. & }®2 and by ¥ its projection onto the orthogonal complement to { To o Ty 182 in Li(o). It is

easily seen that y has the form
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Y=y - z g0

for suitable coefficients €y Thus, ¥ belongs to 1,y ,according to Proposition 1V.1. For each g in

M,y » let us define

(Iv62) Ta=9- L LA
e {sy )%

where the coefficients Y, are such that T, q belongs to ™ o B
(q,%)

~ 2
lwllg o,
(we have used the fact that, if y, and y, are two different elements of { s, , t, 192 then g, is

(Iv.63) Y, =

v

orthogonal to ,). Since y belongs to Z, , we have b,(v, g-T1y@) = 0 for all v in X, or
equivalently, recalling the definition of M, ,

VreM,, (a-tq,r), =0
Thus q is the orthogonal projection of T gonto M, , i.e., T is the inverse of 1, . Finally, let us
estimate the norm of T . By (1V.62) and (1V.63), we have for all g in M,

ltyally ., <Mlally, + Py Iy, wlly,
. . 2 '] K
ye{sy,t,)®

<lallg, (1+  Z lollo )
wE{SN,tN }®2 ”‘“”o,w

Taking into account (1V.1), (IV.57) and (1Y.58), one obtains

sl + tyll, < N2,

while by (1V.1), (1¥.59) and (1Y.60), one has
32 and Ity o, >c N3/2
It follows that, for any y in {'sy , ty 82, lwlly ., 7 ”Mo,w is bounded independently of N, thus for

each g in M,

lItyally,, <cllally,,

which is precisely (1V.51).

lIsyllo, = cN

Due to Proposition IV.7, we can apply our algorithm with the space T"lw defined by (1V.49)
and (IV.61), and we do obtain the estimates (1V.55) and (1Y.56).
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Y. A collocation method for the Stokes problem.

In this section, we will study the convergence properties of a spectral collocation
approximation to the Stokes problem (I11.1). This method can be extended to an efficient
collocation scheme for the approximation of the full Navier-Stokes equations (see [Mé]) ; the

error analysis for this latter approximation will be performed in the following section.

Yi1.T1 i

We consider the simplest Chebyshev collocation approximation of the Stokes probiem
(H1.1). This scheme uses a single grid for both the momentum and the continuity equation, the
grid being given by the cartesian product of the Gauss—-Lobatto points in one space variable for the
Chebyshev mesure p(L) dg.

More precisely, for afixed N > 3, letussetfor 0 < j <N
(v.1) cj:cos(jrt/N) and gj:rt/c_jN )
(withcy = ¢ = 2 andEj = 1for 1 <j <N-1). These are respectively the knots and the weights of
the Gauss—Lobatto integration formula for the Chebyshev weight, exact for polynomials of degree
< 2N-1,1e.,
(V2) Vel (-1, [ e@e@dr =2, 40,0,
it will be useful in the sequel to recall that the interior quadrature nodes are the zeros of the
polynomial T,’l , 1.e.,
(V.3) Vi, T<jsN=T, Ti(g) =0
We recall also that, as a consequence of (V.2), the bilinear form
(V.4) V(o) e [CU-1,1DT, (9.0, = Z?:o ICGIRTICSY N P
is indeed a scalar product on Py (-1 ,1) and the associated norm is uniformly equivalent to the
norm ||.||0'9 since we have (see [CQ1, §3])
(V5) Vg ePy(-1.1), llglly, < (0.0),4" <+Zlloll,
Finally, for each function ¢ in (f’(?)), we shall denote by I\ ¢ the unique polynomial in P\ (Q)
which interpolates ¢ at the nodes defined in (V.1), i.e., such that
(v.6) V3, 0<i<N, no(g) =9(T)

Next we introduce the cartesian product of the points defined in (V.1)
(V7) EN:{x:(cj,Ck),OSj,kSN} ,
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as well as the corresponding weights

(v.8)  Vx=(g;, L)€y, W,=0;0

The bilinear form

(V.9) V(o) € [P, (0 y=Lyez, 0040 0,

is an inner product on P,(Q). The associated norm, which we denote by Ill, x » 1s uniformiy
equivalent to the norm “'"O,w (see [CQT, 83]), more precisely we have,

(v.10) Vo ePy(Q), llell, <lel,y<2lely,

Finally, for each function f in ®(Q), we shall denote by J\ @ the unigue polynomial in P\ (Q)
which interpolates ¢ at the nodes defined in (V.7), i.e.,

(V.11) VxeZy, Jyo(x)=px)

Note that we have

(V.12)  VyePy(Q), (¢-Jypw),y=0 .

Figure V.1
The set =, of collocation nodes (for N= 7).

Let us now introduce the collocation approximation to problem (Il1.1), first in the
homogeneous case (111.2). We look for the approximate velocity u" in the space Xy = [Pﬁ (Q)1?
and for the approximate pressure pN in P,(Q). We assume here that f belongs to [00(6)]2. We
consider the following problem : Find (uN,pN) in Xy x PN(O) such that
(V.13) | -vad() +(grad )0 =1(x) forxe Z,NQ

(divu')(x) =0 forxe =,

In order to discuss the well-posedness of this problem, as well as its convergence
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properties, we now give a variational formulation of (V.13) which fits into the abstract scheme
(11.17). Thus Tet us introduce the following bilinear forms ay: Xy x Xy - R and b, :
Xy x Py(Q)—> R (i =1, 2) defined by
(V.14)  auv) =-v(Auv)
(V.15)  byy(v,@) =(vgrada),y
and
(V.16)  byy(v,g) = - (divv,g)
Let us note that, if g belongs to P\ (Q), grad g belongs to [Py_,(-1,1)@P(-1,1)] x
[Py(=1,DeP,_,(-1,1)] Hence, from (V.2) we deduce that for any v=(v,w) in Xy

b @ = [, 000 dx T, (30/8%)(x,L) V(X ,L) g,

+ Z;J-N=0 o, 11 (Ba/8Y)(T; u) w(k; ,u) o(y) dy

Let us integrate by parts the first term in the x-direction and the secand one in the y-direction .
Noting that 0™ div(vw) belongs to [Py_;(-1,1)eP{(-1,1)] + [P (-1,1)eP,_,(~1,1)] and
recalling (V.2) we obtain
(V.17)  by(va) = (0! div(vw),g),
Using the same argument we also have
(v.18) a(uyv) =v (gradu, W’ grad ("‘*’))u,N
Thus the bilinear forms ay, and by, (i = 1, 2) are discrete approximations of the forms a and b,
(i=1,2) defined in (111.14) to (111.16).

Proposition Y. 1: Problem (V.13) is equivalent to the following variational one : Find (u",p")
in X\ x P (Q) such that
(V.19) | VveXy, gu'wv) «b(vp)=(tw) ) .

VgePy(Q), byu'a=0

Proof : The first equation in (¥.19) is obtained by taking the inner product in R? of the first
equation in (V.13) by v(x) w, , for x in =, N Q, and summing up over the points of =, (let us
recall that, since v belongs to X, , it is equal to 0 at any point of =, of the boundary of Q).
Similarly, the second equation in (V.19) is obtained by multiplying the second equation in (V.13)
by q(x) w, and summing up over all x in = . Conversely (V.13) follows from (V.19) using as test

functions the Lagrange basis in X and P\ (Q) associated to the set of points =, .
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In analogy to the Galerkin approximation, one expects that the spaces of trial and test
pressures have to be restricted to proper subspaces M, and M, of P, (Q) so that the bilinear
forms ay and by, (i = 1, 2) satisfy the inf-sup conditions (1.1 9), (11.20) and (11.22), . Then, we
obtain another particular case of the abstract approximate problem (11.17), if we set, as before,
X,s = Xo5 & X, provided with the norm of X, M, =M, and M,, = M, provided with the norm
|].||0'w , and if the forms a; and b (i = 1, 2) are respectively the forms ay and by, (i = 1, 2) defined
in(V.14),(V.15) and (V.16).

Hereafter we shall characterize the spurious modes for the pressure and we shall indicate
again one choice of the spaces M, and M,,, which leads to a "spectral” rate of convergence for both

the velocity field and the pressure.

2 Tt . I X
The characterization of the parasitic modes for the discrete pressure can be carried out by

suitably modifying the proofs given in Section 1V.2 in the case of the Galerkin approximation.

However, we prefer to follow a different strategy, which consists in transferring the resuits

therein obtained into the context of a collocation approximation. To this end, let us define the

operators Ry : P\ (-1,1) - Py (-1,1) by

(V.20) VyePy(-1,1), (Ryo.w),y=C(g,9), ,

then Sy : P (Q) - P, (Q) by

(V.21) Yy ePy(Q), (So.9),y=(0.9),

By (V.5) and (V.10), both Ry and S are isomorphisms, the norms of which can be bounded

independently of N if we endow P\ (-1,1) and P, (Q) respectively with the norms ||.||0,g and|.lly , -

Now, let Z,, denote the subspace of all q in P,(Q) for which we have
(V.22), VveX,, bylv,g) =0
In order to characterize the spaces Z;, , we introduce the polynomials r and ry of P\ (-1 1)
satisfying
(V.23) Vj,0<i<N, ro(@) = Bo; and (g =8y
and a polynomial
(V.24) q =Ry
where g, is defined in (IV.16). It is an easy matter to check that qy" satisfies the relation
(v.25) VgeP(-1,1), (" .9),x= J_11 ¢(T) dg
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in analogy to Proposition V.1, we can state the following result.
Proposition V.2 : The subset Z,, is the vector space of dimension 8 spanned by { To s Ty }®2
and by {rq,ry %%
Proof : Let q in P, satisfy (V.22), . Then Sy 'q is such that

VveXy, b(wS'g)=0 |,
hence, by proposition IV.1, q belongs to the space spanned by { RyT, , RyT, }®2 and
{RyTh - RyThsi 182 By (V.2) we have RyT, =T, and Ry Ty = Ty, while a direct computation shows
that (seee.g. [CQ1, §3])
(V.26)  (Ty, T, =2(Ty, Ty,
so that RyTy = 2 T . Let us check that Ry Ty, (%) = ((N+1)/N) ¢ T (g). Differentiating (1V.3) and
using (1¥.4) yields
(V.27) Ty, (@) = (IN+1)/N) (T T(T) + N T (T)
Thus the relation

(IN+D/N) (@ T W)y = (T ),
holds for all y in P _,(-1,1), as a consequence of (V.2) and (1V.1). For y = T, the identity
follows from (1V.4), (V.2), (V.26) and (V.27).

Hence we have proven that Z,, = Span [{ T, , T, 12 U { Ty, 6Ty 1221, Finally we easily
derive from (1¥.2) and (V.3) that
(V.28)  ro(t) = (=" ((1+0)/2N) T(@) and ry(T) = ((1-T)72N°) Ty(@)
which ends the proof.

Following the same lines we can prove the analogous result to Proposition 1V.2.
Proposition V.3 : The subspace Z,y Is the vector space of dimension 8 spanned by
{ay* Ty )®%endby {ry,ry )%
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=1 i=2

Formb, [{Ty,Ty }o2 U{Ty Tha }o2 {ay . Ty }o2 U{Ty T 3o

Formby | {To, Ty 322U {ry 1y 3% | (g, Ty 122U {ry 1y 1®2

FigureV¥.2

The parasitic modes for the forms b, and b, (i=1,2).

Y.3. An inf-sup condition for the forms b, (i = 1
In order to satisfy the discrete inf-sup condition (11.22), for the forms b,y (i=1, 2),
according to Propositions V.2 and V.3, we can choose as spaces My, (i = 1, 2) any supplementary
space to Z, in P,(Q), i.e. any subspace of P\ (Q) such that
(V.29) ’ codimM, =8 ,
I My N Zy = {0}
If this condition is fulfilled, the existence of a constant 8, for which (11.22), holds is ensured by

the finite dimension of the spaces M,, . As in the previous case of approximation by Galerkin
spectral method, the choice

(V30)‘ MiN:{qe pN(Q) }v re ZiN ,(q,r‘)w’N:O} )
leads to a minimal constant and is useful to prepare a better choice. Alternative characterizations

for (V.3O)i follows from Propositions V.2 and V.3 : we have as in the Galerkin approximation (see
(1¥.19) and (1Y.20))

(v.31) | Myy={w " divve),veXy)

={qeP(Q); Vre(T, ,TN}®2, (qr),=0andq(+1,£1)=0}
and

(v.32) Moy ={ divv,veX,}
={qeP(Q); ‘v’re{qN,TN}®2, (q,r),=0 anda(+1,£1) =0}

We are now able to precise the constant B, for this choice of spaces M, (i=1,2).

Proposition V.4 : Let the space M, be defined by (V.30),. There exists a constant B,>0
independent of N such that

by (v,a) —_—
(V.33); VaeMy, sup —fE=— 5 N Nally.,
vV E XN v 1w ‘
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Proof : Consider the case i = 1 first. We know from the proof of Proposition I1V.3 that, for each g
in M, , there exists v in X such that - w™ " div(vw) = qand “V“m <o N? quloM (see (1¥.30) and
(1¥.31)). Since the discrete inner product induces a norm uniformly equivalent to the norm ||.|[0'w
on P(Q) (see (V.10)), we have

by (v @ = @@ yzclall, .

whence (V.33), holds. The case i @ 2 follows similarly using now the proof of Proposition IV.4 .

As established in Section V.6, the choice (V.ISO)i is not well suited to approximate the
space of pressures. Here again an alternative choice F’lm for the pressure space can be given. In
order to ensure the exact pressure in M, to be approximated within spectral accuracy by an
element in F'11N , we require that there exists areal number A, 0 < X\ < 1, such that
(V.34) P(@NM, < M
Furthermore, in order to retain the compatibility between M, and X , we also require that the
orthogonal projection Ty - F’im - M, onto M, with respect to the inner product (.,.)w'N ,

satisfies

(v.35) vaeM, lally, <clngal,,, -

This yields, as in Section 1V, the following inf-sup condition :

Proposition V.5 : Let F’11N be a subspace of P\ (Q) such that hypothesis (V.35) holds. There
exists a constant 51> O independent of N such that

- b , <~
(V.36) VaqeM,, sup —T‘I%ﬂ >B8,N 2 ||Q||o,w
vV € XN vl\,w

We refer to Section 1V to the proof of Proposition V.S and for the discussion of the existence
of spaces F’Im satisfying the hypotheses (¥.34) and (V.35); indeed the space T"I1N defined by
(1¥.49) and (1V.61) works (see also Section V.6 for some considerations on the implementation of
the methad).

V.4.The inf-sup condition for the form ay._

Let us assume here that M,, (i = 1, 2) is any supplementary space in P\ (Q) of the space Z,,
defined in (V.22), , i.e. satisfies (V.29). Setting
(V37) Ky={veX ;vVgeMy byv)=0} ,
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by the definition of ZiN , we actually have for allv in KiN
VaePy(Q), bylv)=0 ,
thus, as in the Galerkin method,
(V.38) Ky=K.NX, (i=1,2)
It is readily seen that in this case we have also dim K = dim K, . Thus, by Remark 1.1, it is

enough to check the inf-sup condition (11.19) for the form g aver K, x Ky .

Proposition V.6 : There exists a constant o > O independent of N such that
a, (uv -
(v39) Vueky, s —9Y g,

cek, TN

Proof : Let u = (u,v) be an element of K, . As in the proof of Proposition 1V.5, we deduce from
(V.38) that there exists ¢ in P, (Q) N HZ ; (Q) such that
(V.40) wu=curlg.
Let us set againv = w ' curl (pw) and recall (see the proof of Proposition I11.2) that
v.41) vy, <clull,
Setting now, as in the continuous case, ¥ = Ag¢ , we have by the definition (V.14) of the form ay
ay(uyv) = - v (Auy) =~ v(curly, w ' eur (gl n
or more explicitely
(V.42)  ay(uv) = - v (8y/8x, 0™ 3(pw)/8x), y - (Bx/8y, w™' B(pw)/BY),
On the other hand, recalling that the Chebyshev weight w is the product of the Chebyshev weights
in each direction, i.e. w(x) = p(x) p(y), we have
- (By/ox, 0 8(9w)/ax), \
o T 0 LT (/80T LOLBR/B0(E, L) + 9T, L) 0'(L)/e(t)] g )
By (V.2) and (V.3) it follows that
—(8y/0x, 0! 0(9w)/0xX) ,y =~ Z:zo 0, [1_11 (8w/08x)(x,g,) (8(9p)/8x)(x,L,) ax]
ST o Y (@) (kg ekt 000 dx]
ST T @A, L) 0T, 8 0,0,]
The term in (V.42) containing the y-derivative can be handled similarly. Thus, we have proved
that
(V.43)  ay(uw) = (A%9,0), -
By [MM, Lemma 3.2], there exists aconstant ¢ > 0 independent of N such that
Vg e Py NH2L(0), (A%g,0),, >clvll?,
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Then, the proposition follows from (V.40), (Y.41) and (V.43).

y Y j ' n

In this section we consider the collocation approximation (V.13) to the homogeneous Stokes
problem (111.1)(111.2). Let us recall that X, = [P(Q)]%.

For an appropriate choice of the spaces of pressures and of test functions, we know from
Propositions V.6, V.4 and V.5 that the bilinear forms a , b,, and b,, restricted to these finite
dimensional subspaces satisfy the inf-sup conditions (11.19), (11.21) and (11.22), (i = 1, 2) for
suitable canstants. Moreover, it follaws from (V.16), (V.17), (V.18) and (V.10) that ay and by,

(i =1, 2) are uniformly continuous over X, x X, and X, x M, respectively.

Corgllary 1.2 yields the following stability result.
Theorem V.1 : For each integer N > 3, the collocation approximation (V.13) to the Stokes
problem (111.1)(111.2) has a unique solution (uN,pN) in Xy x My, where M, is defined by
(V.30), (resp. in Xy x M, , where ™, satisfies the hypothesis (V.35)). Moreover, the
following inequality is satisfied
Va4l N2 g, < cltliemye

for aconstant ¢ > O independent of N.

Remark Y.1 : In this case as for the Galerkin method (see Remark 1V.6), the discrete velocity is

independent of the space of pressures.

Let us now consider the convergence of the approximation.
[heorem V.2 : Assume that the solution (u,p) of the Stokes problem (H11.1)(111.2) belongs to
[Hf‘)(())]2 x HZ"(O) for a real number s > 1, and the data f belong to [H(‘:(O)]2 for a real
number g > 1 .Then the approximate velocity uN, as defined in Theorem Y.1 | satisfies the
convergence estimate
(v.45)  Ju-u"l, , <c (N"®flul,, « NI,

for a constant ¢ independent of N.

Proof : Let us first remark that

(V.46) Vve[Py (), VzeX,, (a-g)v,2)=0 ;
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indeed, the product v z is an element of P, ,(Q) and the discrete integration formula in the
definition (V.14) of a, is exact (see (V.2)). By (V.38), we can apply Corollary I1.3 with
Vg = W = Qy_qu (the divergence—free polynomial approximation to u, the existence of which is

guaranteed by Lemma 1V.6) to get the following error estimate for the velocity :

(v.47)  lu-u"ll, , <c(fu-Qg_qull,, + sup w wN
: L zex, Izl .,

Note that the term a-ay has disappeared in this estimate due to (V.46).

)

Dueto LemmalV.6, it is sufficient to bound the error on the data f. We have for any z in X
[(1,2), - (1,2 | < (,2), - (T3 8,2, |+ [ (TI}_t,2) -~ (Uuf. D)yl
where 1'[,(3_1 is the orthogonal projection operator onto [PN_1(Q)]2 with respect to (.,.) , , and Jj,
is the interpolation operator at the collocation nodes defined in (V.7). Hence we get by (V.10)
(v.48) WzeXy, |2, -t 0l <-TTS tly, + It-Jytlo, ) iz,
The first term on the right-hand side can be estimated by (1V.46), while the interpolation
operator satisfies the following inequality ([CQ1, Thm 3.1]), valid for any real numbersr ands,
s>1and0<gr <s,
(V.49) Vg eHYQ), llo-Jyol , <cN [,

This ends the proof of the theorem.

Remark V.2 : Estimate (V.45) is optimal with respect to the regularity of the solution and of the
data.

Let us turn now to the error estimate for the pressure.
Theorem V.3 : Assume that hypotheses (V.34) and (V.35) hold and that the solution (u,p) of
the Stokes problem (111.1)(111.2) belongs to [Hi(())]2 x Hfj(o) for a real number s> 1, and
the data t belong to [Hf:(())]2 for a real number o > 1.Then the approximate pressure p" in
M,y . @s defined in Theorem V.1, satisfies the convergence estimate
(V50)  lIp-p"l,, < {N*= Cllull, , +lIpll,_y ) + N2l )
for a constant ¢ independent of N.

Proof : We use Theorem 1.3 and, thanks to (V.46), we have
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lp-p"llp,, <cN? (llu-Qy_yull;
(b1—b1N)(z; qN)

+ inf {llp-gylly, + sup }
ay € My VOO e, Izl .,

ze%, T2l
Due to Lemma 1.6 and to (V.48), we only have to estimate the terms on the right-hand side

concerning the pressure. Let us recall that the space Mm we have chosen satisfies (V.34) for a
fixed X\ < 1. Thus, we can take g = T[[O)\N]p. The truncation error is again estimated by (1V.46).
Moreover, using the exactness (V.2) of the quadrature formula as described in the previous proof,
we have

VzeX,, (b,-b )T =0 ,

hence the result.

Remark V.3 : Let us for a while consider the problem : Find (uN,pN) in Xy x My (resp. in
Xy x M) such that
(V5D | Yvexy, au'v +by(vpY) =y,

| VaePQ), byylu,® =0
(which is problem (V.19) with (f,v) replaced by (f,v),, or equivalently with S, f replaced by f).
Then, Theorems Y.1 to V.3 are still valid. Furthermore, since the second term in the right-hand
side of (V.47) disappears, the estimates (V.45) and (V.50) can be replaced respectively by
(v.52) flu-ufl,  <eN"[lull,, .
(v.53)  lp=p"llg,, <c N Cllul,,, +lIpll,_y )
This will be used in Section V1.

¥.6, Concluding remarks in the homogeneous case.

We complete Section V.5 with some considerations on the practical implementation of the
Chebyshev collocation scheme (V.13). As a matter of fact, we have indicated a pair of spaces M,
and M,,, for which the collocation scheme is well-posed and guarantees spectral accuracy. Now, it
remains to exhibit a precise set of algebraic equations, as well as of unknowns for the pressure,
which correspond to the scheme and which are efficiently implementable.

To this end, let S_ denote the set of the four corners of the square Q, and let 5 be a set of four
collocation points in =, \ S_ satisfying the following property :

(V.54) det(q(x))=0 , 1<J,L<4 ,
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where x; runs through S and g, runs through { s Ty }®2 (the polynomial gy* is defined in
(v.25)).

Proposition V.7 : Assume that hypothesis (Y.54) holds. To apply the collocation scheme
(V.13) isequivalent to solve the following linear system : Find (uN,pN) in Xy x My , where My
is defined by (¥.30), (or in X x F’]m , where F’l,N satisfies the hypothesis (V.35)) such that
(v55) | —vAd'®) « (gradp)(x) =1(x) forxeZ, N0Q

(divu)(x) =0 forxe Z\{S US}

Proof : Of course, any solution of (V.13) is a solution of (V.55). Conversely, let (uN,pN) satisfy
(V.55). Since uN vanishes on 8Q), div TARE equal to O at the four corners of Q. Moreover, by
Proposition V.3 , we know that b,y (u",g) is equal to O for all g in { g,*, T, }®% By (V.55) this
relation becomes

vae{gr Ty 1% Z,.s (divu)(x) a0 o, =0
Thanks to (V.54), we obtain (div uN)(x) = 0 for any x € 5. We conclude that o is divergence—~free

in Q, hence (uN, pN) satisfies (V.13) (and (V.19)).

As far as the choice of degrees of freedom for the pressure is concerned, it seems
unpractical to find out a subset of collocation points in the domain, which uniguely determine the
polynomials of T“I1N (i.e., which form a unisclvent set for T“Im). 1t is more convenient to
determine the discrete pressure through the complete set of collocation points in the domain (or,
equivalently, to retain all the modes for the pressure). This means that the algebraic system to be
actually solved is underspecified. Once a solution of this system is obtained in some way, it will
yield a "good” velocity field and a "good” pressure gradient at the collocation points (and only
there !). Inorder to get a "good"” pressure, i.e. the pressure satisfying an estimate like (V.50), one
has to extract from the computed pressure its component along ﬁm . This can be done by taking
the orthogonal projection of the computed pressure onto T"I1N with respect to (.,.)w . Other

techniques of filtering the spurious modes have been successfully applied (see, e.g. [Mé]).

¥.7. The non homogeneous case.
Let us now consider the approximation of the non homogensous Stokes problem

(11.1)(111.39) by a collocation method. We shall suppose that this problem is well—posed, i.e.




—47_

that (111.40) and (111.41) hold.

Hereafter, we assume that the space I“IiN is defined by (V.SO)i and that the space T"Im
satisfies (V.35). After the analysis of the homogeneous case, we propose the following formulation
of the discrete problem :Find (uN.pN) in [PN(O)]2 x M, (resp. in [PN(Q)]2 x F’lm) such that
(v.56) | VveXy, g v +byvpaty, ,

VaeMy, byw'a=0 ,
ux) =g ,(0 forxe S NT,, JeZ/4Z

Remark Y.4: This formulation is not as direct as the formulation (V.13) of the homogeneous
case. Indeed, we have in mind to discretize the equations in a collocation way, hence we would like
to satisfy each of the equations at a suitable set of points of 2 . More precisely we would like to
salve the following problem : Find (uN,pN) in [PN(O)]2 x M, (resp. in [PN(Q)]2 X F’\m) such
that
(V.57) —v Au'(x) + (grad pYY(x) = 1(x) forxe 2, NQ

(divu')x) =0 forxeZ, |,

Jx) =9 (x) forxe S, N, JeZ/4Z
The last problem is clearly equivalent to the variational formulation : Find (uN,pN) in
[PN(O)]2 x M, (resp. in [PN(O)]2 x M,,,) such that
(v.58) | YveXy, gu'w) +b,w,p)=Uw y .

VaePy(Q), byw'@=0

W) =g (x) forxeZyNT,, JeZ/4Z
However, it follows from Section V.3 that the relation sz(uN ,0) = 0 can only be satisfied for allq
in M, and generally not for all q in P\ (Q). Indeed, since u' is a polynomial, we wouid derive
from (V.58) : divu" = 0 exactly. In particular this imposes five conditions for u" at the
boundary :
(V.59) (divu')(x) =0 for x corner of Q
(V.60)  Tezsag Jr, W . mydo=0

These equations solely depend upon the values of u" at the boundary, hence upon /¢ ;. In general

these relations are not satisfied.

Example : Assume that m is even, 2 < m < N, and let us choose as boundary conditions
(V61) VJeZ/4Z, ¢,=(L (), L (T))

(note that the Legendre polynomial of degree m has by definition a zero-average). These conditions
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fulfill the hypotheses (111.40) and (111.41). Thus, if f is chosen in X', the continuous problem is
well-posed. But, condition (V.59) does not hold since I 9 ; coincide with ¢, for any J € Z/4Z and
div uN ata, for instance is equal to Lr'n(—1) - Lr'n( 1) = = m(m+1). In this example, the continuous
problem has a solution in the weak sense only, since the divergence of the velocity is not zero at
the four corners. However, even if the exact velocity field is divergence free at the four corners,
condition (V.59) need not be satisfied : in fact, the Lagrange interpolation operator will not

generally preserve the boundary values of the first derivative.

Hence, problem (V.57) is generally unsolvable and the formulation (V.56) is used instead.
Besides, we can check the following proposition.
Proposition V.8 : Any solution (uM,p") of problem (Y.56) in [PN(O)]2 x M, (resp. in
[PN(O)]2 x M,,) satisfies the collocation equation

(V.62)  -vAu(x) +(grad pH)(x) =1(x) for xe 2, N0

Remark V.5 : Due to (V.32), solving the equation
VgeMy, byt =0
in (V.56) is equivalent to the minimization of ||div u" ll, n 5 this condition is implemented in

practice. We refer to [Mé] for details and numerical results in the non homogeneous case.

As in the proof of Theorem [11.2 we shall need an element in the space of trial functions (i.e.
[PN(Q)]z) that satisfies, in a discrete sense, the boundary condition (111.39). To this purpose we
recall the following approximation result that can be found in [BM].

Lemma V.1 :There exists an operator TTN,b from Hl,(o)into P(Q) such that, for any function
9 in H(Q)
(V.63) Vxe I NaQ, Ty, @(x) = ¢(x)

(v.64) |lo-TT0ll, , <cC inf

cp lo-oylly . + 2y 2/az ”‘plrJ' NP l574, )
Py € Py

First, we check that the discrete problem (V.56) is well-posed.
Iheorem Y.4: for each integer N > 3, the collocation approximation (V.56) to the Stokes
problem (111.1)(111.39) has a unique solution (uN,pN) in Xy x My, where M., is defined by

(V.30), (resp. in Xy x M, , where M, satisfies the hypothesis (V.35)). Moreover, the
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following inequality is satisfied

-2 N 3/4
(V.65) ”uN “Lw +N "D "0,w <c( “fn[c~(5)]2 +N Z‘JEZ/4Z ”lPJ “3/4'9 ) ,
for a constant ¢ > 0 independent of N.

Proof : If we define u" = u" - Tl pu in Xy, then the pair (u",p") is a solution of (V.56) if and
only if the pair (a",p") satisfies :
(v.66) | VveXy, g v +by v aliv),y -a(Tuy) |

Vg€ My, by, = - by (T u,0)
We derive the result from Theorem V.1 and (V.64), together with the following estimate for the
interpolation error ([CQ1, Thm 3.1]), valid for any real numbersr ands,s> 1/2 and0 < r <s,
(V.67) Vg eHX=1,1), llo-tyoll., <cN"*]gl,,

In order to investigate the convergence properties,we shall introduce a slightly different

approximation that satisfies condition (V.60). We first define the constant
(V.68) ey =(1/8) L z/a2 JrJ
Due to (111.41) and (V.67), if ¢, , J € Z/4Z, belongs to H;(I‘J) for T > 1/2, we have
(V.69) leyl<eN" 2L, cz/az 0yl

Let us denote now by e, the vector (e , e,) and remark that now f u-e, is a boundary

Iy9,.n,do

condition that satisfies (111.40) and (111.41). Hence we can define the two auxiliary problems
a) Find (4,p) in [H(Q)1% x M, such that

YveX, a(uv) +b,(vp)=(fv), ,

(v.70) VgeM,, b(ug=0 ,
u= T u-e =Jyu-e, ondQ ;

b) Find (@,3%) in [P (Q)]% x M, (resp. in [P (Q)]% x M,,) such that

VveX,, a@ v +b v =,y

(V.71 | YageM,, by@'a=0 ,

000 = (T, () ey = (Yyw(x) -, forx € 5, N30

The error bound between the solutions of problem (111.1)(111.39) and (V.56) will be obtained by

studying the differences between u anda, u and ", 4" and u" .

Proposition ¥.9 : Assume that the boundary data ¢, , J € Z/47Z, belong to H;(I'J) for a real

number T > 3/4. The following estimate is satisfied
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A 3/2-
(V.72)  fu-ully, <eN"TT 2 zsag 0y,
for a constant ¢ > O independent of N.

Proof : It is a consequence of Theorem I11.2 and of the approximation estimates (V.67) and
(¥.69).

Similarly we can obtain an error bound between G and O Indeed, note that o' oM is
constant, equal to ey . Hence, by(V.69), we obtain the following result.
Proposition ¥.10 : Assume that the boundary data ¢, J € Z/4Z, belong to H;(FJ) for a
real number T » 3/4. The following estimate is satisfied

~N _
(V.73) "uN_u ”1,w <cN ' ZJGZMZ ”LpJ”r,g
for a constant ¢ > O independent of N.

In order to get now an error bound between u and " we first note that problem (V.71) is a
discrete approximation of problem (V.70) . Hence the abstract results of Section Il can be applied.
We have the following erraor estimate.

Proposition Y.11 : Assume that the solution (u,p) of the Stokes problem (111.1)(111.39)
belongs to [HZ(O)]2 x H"1(Q) for a real number s »1, that the data f belong to [H:)(O)]Zfor a
real number o > 1 and that the boundary data ¢,, J € Z/4Z, belong to H;({'J)for a real
number T > 3/4. The following estimate is satisfied

(V.74) 861, <o OS2 flull, Nl + N2 2 e gyaz 19,11, )

for aconstant ¢ > O independent of N.

Proof : Letussetu=u - T\ ,u + ey . Since e, is constant, (u,p) is the solution in X x M, of
(v.79) | VveX, a@,v) «b,(vp) = (tv), - a(Tuv)
| YaeM,, b,@,) =-by(TT,,u.0)

Next, TR L & npY + €y 1S the solution of (V.66). Let us define the forms g and g, by the
relations

VaeM,, <0,0>=-b(TTyu@) and Vqe My, <gy,q> = - by (Tl u,0)
Since we already noticed that the hypotheses of Corollary [1.3 are fulfilled, we derive from
(11.35)
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o -l <cl wei‘gf W lu-wll, , + inf ) lu-vll, ,
oN\SN [P, ,(Q
(V.76) ve [Py4(Q)]
(tz),, - (t2) a(Tl,,u,z) —a, (T, . u,z)
+ sup ”w ” WN D Nb ” ”N Nb ]
z e X, Zlly . z e Xy Zlyw

In opposition to what we were able to do in the homogeneous case, it seems that the only way to

bound the term  inf lu-w HW is {0 use Proposition 11.1. By Proposition V.4 we have
w € Ky (gy)
inf la-wll, ,<cN?[ inf la-—vl, .,
w € Koy(gy) velPy ()
(N77)
" SUD <g_gN )q> ]
g€ MZN " q HO,w

1) From the definitions of gand g, and (V.2) we write for any g in M,
<g-Qy » 8> = by (TTyu,0) = b,y (TTyu@)
= Dy (Tl pu = Tl pu, @) = by(TTy yu =TT u,0)
Using now the uniform continuity of b, and b, we derive
| <g-gy, o> | <cll Ty u =TTy pully  Hally,
hence, by (V.64) we obtain

| < _g ) q> | 1- 3 —
(V.78)  sup I? i <CON" full, o, + N2 L ez 0,1k,
g€ M,y Alig e
2) On the other hand, we compute
inf ”U—V”Lw < ”u"1,w = flu- T[N'bu +ey ”Lw

° 2
velP 0 ~
Py (] < Nlusiil, + lu-TOpull , + cleyl

Thus, by (V.72), (V.64) and (V.69) we obtain

(V.79) ];nf R ”a“’"m <c( N1—S ”u“s,u + N3/2—r ZJez/qz Il(pJI'tlg )
ve [P, ()]
3) Due to (V.48), (1V.46) and (V.49), we have

(V.80)  sup (t), - (t2),
F XS XN llz“\,u

4) Let us now estimate the last term in (V.76) . We have by definition of the forms a, a and by
(v.2)
|a(TTy,u,2) - 8y (TTu,2) [ =1 a(TTy u - Ty u,2) - g (Tl u - T0 4 u,2) |

< el Thypu - Ty pully , llzlly

< Nt

Thus
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a( T, u,z) -a,(TT,,u,z2) s .
(v.81) zseugl( Nb" 2l N Nb < c(N lull,, + Nt Lyezran 104ll,)
N W

Finally, estimate (V.74) follows from (V.76) to (V.81).

Using naw the three previous propositions, we obtain the final error estimate
Thearem Y.5 : Assume that the solution (u,p) of the Stokes problem (111.1)(111.39) belongs to
[H Q)% HZ"(Q) for a real number s > 1, that the data t belong to [H;',(O)]2 for a real
number @ > 1 and that the boundary data ¢,, J € Z/4Z, belong to H;(I‘J)for a real number
T > 3/4.Then the approximate velacity uN, as defined in Theorem Y.4 , satisfies the convergence
estimate
(v.82) Ju-ull, , <o (N Jlull,, + N Ut + N2 ag oyl )
for a constant ¢ independent of N.

We conclude with an estimate for the pressure.
[heorem Y.6 : Assume that hypotheses (¥.34) and (V.35) hold and that the solution (u,p) of
the Stokes problem (111.1)(111.39) belongs to [HZ(O)]2 x HZ‘I(Q) for a real number s> 1,
that the data t belong to [H:L(O)]2 for a real number o > 1 and that the boundary data ¢,
J € Z/4Z, belong to H;(FJ)for areal number T > 3/4.Then the approximate pressure p" in
M,y » 8s defined in Theorem Y.4, satisfies the convergence estimate
(v.83)  llp-p"lly,, <c {N Cllull,, + Mol ;o) + N2l o + N2 ) az oy, )
for a constant ¢ independent of N.

Proof : Using Proposition V.5 we derive from (V.56) that

(b1—b1N)(Z,qN)
Izll;

}

N .
lp-pllp, < N (flu-u" I+ inf_ {llp-gylly,, + sup
Oy € Moy z¢

(f,2), - (£.2)
Z< XN ”z "1,w

)

Still taking gy = T[[omp , we obtain easily (V.83).
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YI. A collocation method for the Navier—Stokes equations.

VI.1. The Navier—Stokes equations.

We are interested now in the approximation of the full Navier Stokes equations on the
domain Q by a collocation methad. From now on, we shall denote by x = (X, , X,) the generic point
of Q, and by w, and w, the components of any vector w in R2. Given a force field f in Q and a
viscosity v > 0, the problem is to find a velocity fieldu = (u, , u,) and a pressure p solution of
(v1.1) -vAu+gradp+ (u.Viu=f inQ

divu=0 inQ ,

)

such that u satisfies the following homogeneous boundary conditions
(VI.2) u=0 ondQ
We mean by (u.V)u the sum 2, .; ¢, U(Bu/8x).

Let us consider the nonlinear term in equation (Y1.1). We notice that, for any function w
such that divw = 0 in QQ, we have
(VI.3) 2y cico WiOW/OX) =20, ., O(ww)/dx,
The two forms are equivalent for the continuous problem, but generally not for the discrete
problems. For reasons of numerical stability as well as to reduce the computation cost, it seems
more convenient to choose the second expression. Hence, we set
(Vl.4)  G(w) = 21 <ig? a(ww)/ox, - 1

In order to study the well-posedness of problem (Y1.1)(V1.2) in the spaces X and M, we
first state some properties of G.
Lemma YI.1: For any f in X', the mapping G isof class C™ from [H1(Q)]2 into X' and from

X into X'. Furthermore, for any w in X, the operator DG(w)is compact from Xinto X'

Proof : For any u and w in X we have

VveX, [ L, ier Jo @uw/ox)vwd| =12, oo Jo (Uw) (8lvw)/ox) dx |
whence, from Lemma Il1.1, we derive
(VI.5)  VveX, | T er Jo @luw/ox)vodel< el oo luwl, vl ,,.
We recall the imbedding of H'2(Q) into Li(Q) (cf. [CQ3, Thm 4.1] or [BM]). Moreover, using
the Calderon extension theorem (see [A, Thm 4.32]) together with [G, Thm 1.4.4.2], we know that
the mapping : (¢,¥) - @y is bilinear continuous from H'(Q) x H'(Q) into H'"*(Q) for any
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€ > 0. Hence we havefor 0 < e < 1/2

VE6)  Nuywillg, < clluywillyp <o luywilly_ < e llylly liw,

From (Y1.5) and (V1.6), we deduce

(VL7 VveX, |2 [ (Bum)/8x) v w dx | < cllull, lwll, vl ,

and

(VI1.8) VveX, |2, <i<2 JQ (Buw)/ox)vwdx|< ¢ ||ul|1lw ||w|l1’w ||v|l1'w

Then, it is an easy matter to derive from (V1.4) that G is of class C™ from [H1(O)]2 into X' and
from X into X'. The compactness of DG(w) from X into X', is an easy consequence of (Y1.6) and of
the compactness of the imbedding : H'™*(Q) G H'Y2(Q), 0<e < 1/2.

Let us recall that the formsaand b, (i = 1, 2) are defined in (111.14) to (111.16). From now
on, we identify Li(O) with its dual space and we denote by (.,.) , the duality pairing between X and
X' Asin (111.13), for any f in X', the Navier-Stokes equations (Y1.1)(VI.2) can be written in the
following variational form : Find (u,p) in X x M, such that
(V1.9) VveX, aluy) +bvp) +(Gu)v), =0 ,

VaqeM,, b,(uq =0
Then, we derive

[heorem Vi.1: For any fin X', problem (V1.9)has at least a solution (u,p)in X x M, .

Proof : From (111.9) and the imbedding of Li(o) into L2(Q) we first deduce that f belongs to
[H"(O)]z. Using now [GR, Chapter IV, Thm 2.1] we obtain that there exists at least a pair (u,p)
in [H(;(Q)]2 x L2(Q) solution of (VI.1), where p is defined up to an additive constant. From
Lemma V1.1, G(u) is an element of X". Let (u’,p’) be the solution in X x M, of the Stokes problem
with data - G(u), as defined in Theorem 111.1. Then, both (u,p) and (u',p') are solutions in
[H(;(Q)]2 x L2(Q) of the Stokes problem with data - G(u); the uniqueness of the solution of the
Stokes problem implies that u and u' coincide and that p—p' is constant. Now, fixing the constant

over p so that (111.38) is satisfied, we see that (u,p) belongs in fact to X x M, and satisfies (V1.9).

Now, using Theorem IIl.1, we define the operator T from X' into X : f — u = Tf, where (u,p)
is the solution of problem (111.1)(I111.2). Clearly, if (u,p) is solution of the Navier-Stokes
equations (V1.9) then u is a solution in X of
(VI.10) u+TG(u) =0

This formulation will be very useful in the sequel, together with
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Lemma Y1.2 : For any real number q > 2, there exists a constant c{q,v)such that , if a solution

(u,p)of problem (V1.9) satisfies
(Vl 11 ) ”u"Lq(Q) < C(q,\)) »

the operator 1 + TDG(u)7s an isomorphism of X.

Proof : By the compactness result of Lemma Vi.1, the operator 1 + TDG(u) is an isomorphism of
X if and only if it is injective, i.e. the only solution (w,r) of the following linearized Stokes
problem

VveX, alwy)+b,(v,r)+(DGu)wy) =0

VgeM,, by(wag=0 ,
is(0,0). From (111.19) and (VI.5) we obtain

vocllwlly < ey i lluywillg,
Next, using the imbedding of H'(Q) into any L3(Q), s < +oo, and Lemma I11.1, we have

lu w; ., < € o w072, 2,

so that

< (@) lullyqeqy lIw; w < (@) ¢ ugllaggy Iwilly o,

vocfiwly o < o'(@) lullagy Iwll,

and the lemma is proved with c(q,v) < vx/c'(@).

YI.2. A collocation method for the Navier—Stokes equations.

We are going to introduce a collocation problem to approximate the Navier-Stokes
equations, by using the same nodes as in the Tinear case. Let us recall that, for a fixed integer
N>3,X,= [P;(Q)]z. Henceforward, we still assume that M, (i = 1, 2) is defined by (V.30), and
that F’I1N satisfies the hypothesis (¥.35).

Before writing the problem, let us consider the nonlinear terms in these equations, i.e. the
function G defined by (V1.4). Obviously, if a function w of class C° is known only by its values at
the nodes x in =, (see (V.7) for the definition of 5), it is easy to derive the values of ww at the
same nodes, whence Jy(ww). The pseudo-spectral approximation 8(ww)/8x; consists in
differentiating this interpolation function i.e., to compute 8J,, (ww)/8x, .

Assume now that the force f is given in [C°(O)]2. Due to the previous remark, the
collocation problem we are going to analyze is the follawing one : Find (uN,pN) in Xy x M, such
that
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- v Au'(x) + (grad p)Y(0) + Ty ;o (30U (ulu™))78%) (30 = 1(x)
(vt.12) forxe Z, NQ
(divuV)(x) =0 forxe Ex

Inorder to study problem (V1.12), we set for any function w of [C"(?))]2
(VI.13)  Gy(w) =2, cico SNBWU(wywy))/0x) - St
where S, is defined in (V.21). Then, we have

VvgeXy, (Gywlyy), = (21 <i<2 B(Jy(wywy))/0x, ,vN)w'N - (fvy)
and due to (V.2)

wN

(VI14) VwgeXy, (Gw v, =2, en Wy 07 B0v)/8x) y ~ (19, y
Hence, the next result can be proved exactly as for the linear case.
Proposition YI.1: Problem (V1.12)is equivalent to the following variational one : find a pair
(" pMin X, x M, such that
(VI.15) | vveX,, av) +b,(v,p") + (g v, =0 ,

VgeMy, by'a=0

Now, by Theorem Y. 1, we can define the operator T, from X' into XN f - uN =Tt , where
(uN,pN) is the solution of problem (V.51)(recall that it is exactly problem (V.19) with (v un
replaced by (f,vy) ). Clearly, problem (VI.15) implies that u" is a solution in Xy of
(vI.16) u'+T, G (uY) =0

We begin by stating some results about the operator T, .

Proposition VI.2: For any fin X', the operator T, satisfies

W17 Tt <c  sup TWWa
N I w "V ”
vy € XN NI w

and
(V1.18) Timy | IT-TPHl, =0

Moreover, if the solution Tt belongs to [HZ(O)]2 for a real number s > 1, it satisfies the error

estimate

(VE19) =Tl <eNTETe

Proof : By Proposition V.6, we obtain at once
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8, (Tyf, f,
”TNf”1w<C sup _N.(___N_l’.’ﬁ =Cc sup (_‘MQ.

vy € Xy vy lly vy € Xy oyl o,

which yields (Y1.17). Next, we have already noticed (see Remark V.3) that the error estimate
(V1.19) can be proved exactly by the same way as (V.45) for any f such that Tf belongs to

[HZ(Q)]Z. Finally, (V1.18) holds by classical arguments using (V1.19) and the density of [D(Q)]?
inX.

To study problem (VI.16), we shall use a fixed point theorem due to M. CROUZEIX (see [C,
Th. 2.2]), which is a refined form of the discrete implicit function theorem of [BRR]. For the
reader's convenience, let us recall this theorem : we consider a C’—mapping Fy from a Banach
space X, into itself and we assume that ug is a point in X, such that DF,(uy) is an isomorphism of
X\ - We denote by € , ¥, and L (1), 1 > O, the quantities
(V1.20) | ey =IF(uDlly, ¥y = IOF (u )™ . oxy xp

Ly(m) = sup { |IDF(w))-DF(ut) “L(XN'XN) swy € Xy and lwy-ugll <3

Theorem VI.2: Let us assume that 2y LN(ZXNEN) < 1, then for each v > 2yg, such that
Yy Ly(m) < 1, there exists a unigue solution u" of the equation FN(uN) = 0 in the ball
By = { wy € Xy ; llwy—ug "XN < 7 ). This solution satisfies

(V1.21) VwyeBy, fu'-wyll < Do/ =3y LT IR w) ll

We are going to apply this theorem to the mapping Fy =1 + TGy, . In the sequel, we always
assume that the function f is given in [Hf:(Q)]Q, g > 1. We consider a solution u of the
Navier-Stokes equations (VI.1)(VYIl.2) which is nonsingular in the following sense : the operator
1 + TDG(u) is an isomorphism of X (by virtue of Lemma V1.2, such solutions exist for f small
enough !). Even in the classical Sobolev spaces, regularity results of the solution (u,p) as a
consequence of the regularity of f are not easy to derive (see [G, §7.3]), whence we shall assume
in the sequel that there exists a real number s > 1 such that (u,p) belongs to [HZ(O)]2 x HZ‘1(Q).

Let us denote by N' the integral part of (N-1)/2. We choose for uy the image of u by the
projection operator from [HLO(O) N Hi,(())]2 onto [P,:.(O)]2 (this definition of uy seems very
complicated, but the fact that uyuy belongs to [P;_1(Q)]2 will make the estimates more
straightforward, as it will appear later). It has been proved in [Ma2] that the following estimate
holds for any real number r, 0 < r <5,

V1.22) flu-ull., <c N ul,
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vi.3. roperti f the mapping Fy.
In order to bound the constants Y, , Ly and €, , we need several lemmas.

Lemma Y1.3: For any real number € > 0, there exists a constant csuch that, for any ¢and v

in P;(Q), the following estimate is satisfied

(v1.23) [0 =JCowly,, <o N7 ol llwlly

Proof : Recalling the definition of N' and from (V.12) we derive that
(1-dy) (09) = (1=Jp) [0 -TLL @) =TTgw) + Tlou=Tlow) + (o-Tlyu)TTw]
so that
101 =0 Cowllg o, < HCo-TT4 @) =TTLw g, + I T g0 Cu=TT Wy
=T @) TTewlly o + Wy [0 =TT @) =TT 1y
I T 0 =Tl Tl o, + IV [0 =TT @) Tl
From (V.10) and (V.11) we derive
10 -0 Cowllg ., < Co-TTg @) =TT ewllg o, + T g @ Cu=TT Wl
=T @ TTewlly o + 1 Co-TT L @) =TT L
P CVTCVERS  SRTY S T T0  D  VY
< [lo-T 0l ooy W =TT wlly
TG @l oogy =Tl wllg oo+ l0-TUG 01y o I T4t ooy
< ¢ [0 llooqy + I T @ lloogay ] =TT gwlly .,
w10 =TT @l o, 1 T Wl ooy
Using now (1Y.46) and the imbedding of H**2(Q) into L=(Q) for any € > 0, we obtain for any

w

r=0

- 1
(VE.24) 1O =J (0w llg o< e N Lol 0o + 1T 0l o0) lhull o+ Holl o I TTgwlly, o]
We derive the lemma as an easy consequence of the inverse inequality (1Y.29) and of (1V.46).

We can now state the following result.
Proposition V1.3 : For Niarge enough , the operator DF (u}) = 1 + T DG (ug)is an

isomorphism of X, and Y s bounded by a constant Y independent of N.

Proof : We write DF,(uy) in the form
(V1.25)  DFy(uy) = [1 + TDG(W)] - (T-T,)DG(u) - T (DG(u)-DG(uy))
~ Ty (DG-DGy) (uy)
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Let w, be any element of Xy . Since 1 + TDG(u) is an isomorphism of X, there exists a constant o
independent of N such that
(v1.26) [I[1 +TDG(W ] wyll, , > llwyll;
It remains to bound the three other terms in (V1.25).
1) It follows from (V1.18) and from the compactness of the operator DG(u) (see Lemma VI.1) that
limy . I{(T-TYDG(W|,(x x) = O
Hence, for N large enough, one has
(V1.27) | (7-T DG wy [, ., < (co/4) [lwyll;
2) It follows from (Y1.17) and from the continuity of the operator DG (see Lemma VI.1) that
Ty (DG(w)-DG(uT)) ll (¢ x) < € IDG(U)-DG(uP) [l ¢ xy < ¢ Nlu-uil;
From the convergence of ug tou (see (V1.22)), we deduce that, for N large enough,
(V1.28) [Ty (DG(w)-DG(uy)) wyll; , < (co74) llwyll;
3) By (VI.4), (VI.14) and (Y1.17), we know that
| Ty (DG-DG) (uy) wyll, , = pag cico HCT=dp wyud) llg o, + ICT-J) (upiw lly )
From (V1.23), we derive for any € > 0
I Ty (DG-DG ) (uyp) wylly , < e NV llwy ly sl
whence
(V1.29) I Ty (DG-DG)(u) . wyll, , < c N lull, , lwyll;
Finally, we conclude from (V1.25) to (V1.29) that, for N large enough,
VwyeXy, [DFCup)wylly > o/ llwll, .

which proves the proposition.

Lemma VYI|.4 : The constant L,(7)satisfies
(VI.30)  Ly(m) <cT

Proof : Let wy, be any element in XN . From the linearity of DGy and DG, we write
[10F ) Cwy ) ~DFy ()l x, xy0 = 1T (DG (W=D Dk, x,
<y (DG(“"N‘UQ))”L(XN,XN) + [Ty (DG-DGy) (wy-ug) ”L(XN,XN)
Using (V1.17) and the continuity of the operator DG (see Lemma VI.1) yields that
1Ty (DG(wy~ug )l ¢, xp < ¢ 1Dy -u) Ty ) < O lwg—uil

On the other hand, as in the proof of Proposition ¥1.3, we know that, for any z, in X, ,
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| Ty (DG-DG)) (wy-uy) .2z, "Lw
= Z1 <ig? [“( 1 "‘JN) [(WNi—UNi*)zN]“O,w + “( 1 —JN) [ZNi(wN—uﬁ)]HO,w]
so that, by (V1.23) and for any € > O,
Ty (DG-DGy) (wy~u) l x, xy1 < © N flwy-u Iy oo

These two inequalities, together with the definition (V1.20) of L (), imply (V1.30).

Lemma V1.5 : The constant statfsfies
(V1.31) gy <c()N'™ + e N’

Proof : From (V1.10) we write F(uy) in the form
Fy(u) =uy + Ty Gy(ug) - u - TG(u)
= (u¥-u) + (Ty-T)G(w) + T (G(uP)-G(u)) + Ty (G (uP)-G(uY))
which gives
V1.32) gy < llu-ugll, , + HT-TYGW |, , + 1Ty (GW)-Gui) ], ,
+ Ty (GluR) -Gy (u) |l
It remains to estimate these four terms.
1) Using (Y1.22) yields
(V1.33) fu-ugll, , <eN'Cull,,
2) It follows from (V1.19) that
[(T-TpGW |, , <c NP TGWl,,
whence, thanks to (V1.10),
(V1.34) |(T-TGW I, , <cN'*Jul,
3) Due to (V1.17) and to the continuity of G (see Lemma Vi.1), we have
Ty (G -G [, , <cllu-uill,
so that
(V1.35) Ty (G -Gui)l,, <cN'"{ul,,
4) From (VI.17), we derive

IT (G -G ) [ <c sup  ~CWD-Glu) v,
T e, Tyl

Using the definitions (V1.4) and (VI.14) of G and G, , we have for any v, in X
(G(up)-Gy(ug) vy)
= Ly cico Lugus, w7 800w ) /8%, - (uyiuy, 0™ 8wy )/ax), ]

- (f,VN)w + (f’vN)w,N
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But, since uyuy belongs to [PN_1(O)]2 and 0™ 8(wv) ) /0x; belongs to [PN(O)]Z, the exact and
discrete scalar products coincide. Hence, we obtain from (V.48), (1V.46) and (V.49)
| (Gup)-G(u) ), L= v = v I < e NI e llo,
so that
(V1.36) T (Glup)-Gyui) ll; , < eNT [l

Finally, we derive the desired estimate for €, from inequalities (V1.32) to (VI.36).

vi.4. ist onver im .
We can now prove the main resuli of this section.

Theorem YI|.3 : Assume that there exists a solution (u,p) of the Navier-Stokes equations

(V1. 1)(Y1.2) such that the operator 1 + TDG(u) is an isomorphism of X ; assume moreover
that it belongs to [HS(Q)1% x H®~'(Q) for a real number s > land that the data f belong to
[H:'A)(O)]2 for a real number o > 1. For N large enough, problem (V1.12) admits a solution
u,p") in Xy x M, where M, is defined by (V.30), ( resp. in X, x M, , where ™,

satisfies the hypothesis (V.35)). Moreover, the approximate velocity u satisfies the

convergence estimate
(V137 Ju-u']l, < cw) N v e N

for constants c(u) and c(f) independent of N.

Proof : Using Proposition Y1.3 and Lemmas Y1.4 and V1.5, we notice that
2%y Ly(2%yE0) < 2% (NS we(H N°)
so that we have :
Himy Lo 2%y Ly(2%380 =0,
and the assumptions of Theorem VI.2 are satisfied for N large enough. Hence, for each m such that
2y L(m <1,
there exists a unique solution u™ of (V1.16) in the ball By = { wy € X, ; lwy-uy “w <7} Next,
from (V1.21), we derive the estimate
a-uglly, <clFy@Dl,,
which, together with (V1.22) and Lemma V1.5, yields (Y1.37).
Next, by Proposition ¥.3 (resp. Proposition V.S), there exists a unique pN inM,, , where
M,y is defined by (V.30), (resp. in T‘11N , where F11N satisfies the hypothesis (¥.35)) such that
VveXy, bywv,p")=-au'v) - (G ") v,

and the pair (uN,pN) is a solution of problem (V1.12).
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Remark VI.1: The error bound we obtain is the same as for the Stokes problem ; it is still

optimal with respect to the regularity of the solution and of the data.

in order to state an error bound for the pressure, we need a lemma.
Lemma V.6 : The approximate velocity uN, as defined in Theorem Y|.3, satisfies

N
(V1.38)  sup (Gw)-Gy(u) wy),,

<olu) N'™% s e(H) N°
vN € XN ”VN ”1,w

Proof : Let vy be any element in X, . We compute
(G(u) -Gy (uM) v, = (GW)-GW"Y) v, + (G -G (UM v,
Lemma V1.1 and (Y1.37) give at once
| (G(u)-G(u™) ), | < Ce(w) N+ e N7 ) vyl
From the definitions (VI.4) and (Vi.14) of G and G, , we obtain
G -G (U ), 1< X cico 1= o T vl o + 1w, - Gyl
and using (V1.24), (1V.29), (V.48), (1V.46) and (V.49) yields for € > 0
| (GM) -Gy (") vy, | < Colw) N e N el ) vy
Finally, these two bounds imply (V1.38).

Theorem Y1.4 : Assume that hypotheses (V.34) and (V.35) hold and that there exists a solution
(u,p) of the Navier-Stokes equations (V1.1)(V1.2) such that the operator 1 + TDG(u) is an
isomorphism of X ; assume moreover that it belongs to [Hs(())]2 x H=1(Q) for a real number
s > 1 and that the data t belong to [H(‘L(O)]2 for a real number o > 1. Then, the approximate
pressure pN in Mm , as defined in Theorem Y1.3, satisfies the convergence estimate

(V1.39) [Ip-p"l,, < clu,p) N*~° + o) N>°

for constants c(u,p) and c(f) independent of N.

Proof : Let us introduce the solution (GN,E]N) in X, x M, of the following problem :
(VI.40) | VwveXy, g v +b,(vpY) +(@wwv, =0 |,
VqeP(Q), b, =0
Since u" is equal to - T,G(u), we deduce from (V1.19) that
(vi41)  Ju-u'll, , <cw N
moreover, we obtain (see Remark Y.3)

(v1.42) [p-p" lo.., < cCu,p) N3-S
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Next, due to (V1.40) and (V1.15), we natice that, for any v, in X, ,
by (v , BB =3, wy) + (G(W) vy, - a(u wy) - (G () ),
so that, from Proposition V.5, we deduce

ay(u' 0" v) + (G(W)-Gy(uV) vy)

(v1.43)  [p"-p"ll, ., <cN* sup
’ vy € Xy (I

Let v, be any element in X, . By the uniform continuity of a, , we have
a0 0" ) <o T I, vy By o e Clu=al o« -l ) Dl
so that
(VI.44)  g(u'-u" vy < Cc N+ cO N v,
Now using (V1.44) and (V1.38) in (V1.43) yields
(v1.45)  [p"-p"lly,, < clu) N~ + () N*°

which, together with (V1.42), gives (¥1.39).
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